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Abstract

Since architectures and weights for recurrent neural
networks are difficult to design, evolutionary methods
may be applied to search the space of such networks.
However, for all but trivial problems, this space is very
large. Hence, biases are required that guide the search.
Here, we investigate solving a smaller related problem
to establish such a bias. Networks are specified by trees
containing operators that act on nodes (neurons) and
edges (connections). We demonstrate the approach on
a signal reproduction task that requires internal state.
Performance on a small problem size was improved by
solving a smaller problem first. By repeatedly applying
the principle, versions of the problem were solved that
were not solved by a direct approach.

1 Introduction

Recurrent Neural Networks (RNNs) can generate com-
plex behavior [3]. A substantial problem with recurrent
networks however is that they are difficult to design,
due to the difficulty of predicting the behavior of ele-
ments that continually influence one another. There-
fore, manual design of networks leads to a focus on
designs that are relatively easy to construct and un-
derstand.

Instead of constructing networks by hand, another ap-
proach that has been used in the past is to evolve the
architecture and/or weights of neural networks, e.g. [1].
However, since networks need to have a certain mini-
mal complexity in order to be able to solve non-trivial
problems, the search space for networks that poten-
tially solve such problems is very large. Therefore, a
useful bias is required that guides the search to promis-
ing areas of the space. A good source for such a bias
is provided by solutions to related problems; if there is
some similarity between two problems, then aspects of

solutions to these problems may be reused. This ap-
proach may be seen as the evolutionary equivalent of
shaping in machine learning, see e.g. [5]; related also
is the idea of supplying the training set incrementally
[6]. If these related problems speed up the search for
the more difficult problem, then there may be a payoff
in first solving such related problems as part of solv-
ing the actual problem. This is the case if the speedup
resulting from the useful bias extracted from that prob-
lem compensates for the extra amount of effort spent
on solving it. Since the search space of small networks
is much smaller than that of large networks (the space
grows exponentially with the number of elements), this
approach may make it possible to solve large problems
that are not solvable using plain search methods.

In this paper, we consider utilizing bias from small
problems as an approach to finding neural networks
that solve larger, related problems. An important con-
sideration is the representation of networks, since this
to a large extent determines the potential for reusing
aspects that have been found useful in related prob-
lems. A specification in terms of a weight matrix does
not appear suitable, since it is not clear how the weights
of a small network can be used as a bias in finding
a larger network that solves a related task, otherwise
than simply reusing the network. Rather, what is re-
quired is a way to capture construction principles for
the generation of successful networks. If networks can
specified by a set of construction rules, then specifica-
tions that are found to be useful in a small problem may
provide a good starting point for larger problems. Such
a way of specifying networks in terms of construction
rules is provided by Gruau’s elegant cellular encoding
scheme [9], variations of which have been studied by
various researchers.

We describe a cellular encoding scheme that employs
both node operators and edge operators. The expres-
sion process takes place on a two-dimensional plane.
By allowing neurons to move in this space during the
expression process, governed by the specification of the
network, some potential for storing state during the ex-
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Figure 1: Operators used in the experiment.

pression process is provided. The motivation for this
setup is that it may make the combination of partial
network specifications easier.

The paper presents our first results following the above
approach for the utilization of bias from earlier prob-
lems. The networks that are evolved are continuous
time recurrent neural networks, which are tested on a
sequence imitation problem. First, cellular encoding
and its property of modularity are discussed. Then
the task and the evolutionary method are described,
followed by results and conclusions.

2 Cellular Encoding of Neural Networks

Cellular encoding was introduced by Gruau [9], and fol-
lowed earlier generative approach to the specification of
neural networks, e.g. [10]. A cellular encoding is a tree
of operators. Gruau’s description of cellular encoding
employs node operators, i.e. all operators apply to cells
and may result in one or more other cells, all of which
eventually become neurons. Node-encoding has only
weak control over the edges between the nodes, i.e. the
connections between neurons. While this may be suf-
ficient for the binary feed forward networks studied by
Gruau, here specifications need to set the real valued
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weight of each connection, and thus appropriate control
is required. Relevant to this purpose, the use of oper-
ators that operate on edges has been suggested [12].
Here, we employ both types of operators.

In the cellular encoding method used here, the expres-
sion of a tree into a network proceeds as follows. First,
the operator at the root of the tree is applied to an ini-
tial neuron, functioning as a start symbol. This appli-
cation may results in one or more new neurons and/or
connections. Depending on the number of resulting
neurons and connections produced by the operator, the
operator has one or more child nodes. Each child node
operator is applied to one of the products of the oper-
ator, and trees are expressed breadth-first.

The node operators used to modify neurons are the fol-
lowing, see figure 1. CreateAzon creates a connection
that extends from the neuron, while CreateDendrite
generates an input connection. Both operators link to
the neuron whose spatial location is closest, excluding
the neuron itself. Both also accept a parameter ¢, cho-
sen randomly from the uniform distribution over [—2, 2]
at the time the operator is generated, which specifies
the initial weight of the connection. The letters A, B
and C in the figure indicate the elements to which chil-
dren of the operator in the specification tree may be ap-
plied. SplitNeuron splits the neuron in two, assigns all
input connection to the first and all output connections



to the second neuron, and creates a link from the first
to the second neuron. Cycle creates a self-connection.
Move moves the neuron in a specified direction (east,
north, south or west), over a distance determined by an
internal parameter of the neuron r. Furthermore, the
arithmetic operators of multiplication and addition are
available. They can be applied either to the parameter
r of the neuron or to its bias weight. For multiplication,
¢ € [-2,2], while for addition ¢ € [-1,1].

The edge operators, applicable to connections between
neurons, are the following, see figure 1. CreateNeuron
inserts a neuron at the middle of the connection with an
initial bias weight specified by the ¢ parameter. Split-
Connection splits the connection in two, and assigns
half the original weight to each connection, so that the
function of the network is disrupted as little as possi-
ble while introducing a potential for variation of the
network’s behavior. Flip reverses the direction of the
connection. Finally, the Multiply and Add operators
are available. These take either the internal parameter
r or the weight of the connection as argument. Al-
though r is not used by connections, it is inherited by
connections from their parent neurons and passed on
to child neurons, so that the distance over which neu-
rons move can be varied and maintained by neurons of
related ancestry.

3 Modularity of Cellular Encoding

A reason for using indirect encodings when evolving
neural networks, as opposed to a direct encoding of the
weights of a network, is that the information captured
by a partial specification is more modular than a partial
direct encoding. A module can be defined as a subset
of elements whose interactions with other elements are
limited, i.e. statistical dependencies with elements out-
side a module are reduced compared to a non-modular
collection of elements.

In a direct encoding, the elements of variation are the
weights themselves. While some weights have less ef-
fect on other weights than others, the representation of
a weight matrix is unstructured, and hierarchical infor-
mation about the influence of weights on sets of other
weights is not directly available. In an indirect encod-
ing such as cellular encoding on the other hand, which
part of the network is affected by an operator is to a
large extent determined by the position of the operator
in the tree; whereas an operator at the top of the tree
affects the complete expression process specified by the
operators that follow it, the operators at the bottom of
the tree can only make changes to the almost complete
network that has been specified by operators at higher
levels of the tree. Thus, specifications are hierarchically
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Figure 2: Illustration of the input signals used in the
experiment.

organized, which results in a potential for the identifi-
cation of useful modules. It may therefore be expected
that cellular encodings are specifically suited to cap-
turing information about the construction of successful
networks.

Direct encodings of neural networks on the other hand
are known to suffer from the competing conventions
problem [1]. This problem directly results from the
strong interactions between the elements; since chang-
ing one weight may affect the operation of many other
elements in the network, it is difficult to combine sets
of elements that have been formed independently. The
use of crossover with direct encodings of neural net-
works may be problematic for this reason. In indirect
encoding such as cellular encoding, the specifications
are modular at least to some extent, and may therefore
benefit from variation operators that combine indepen-
dently adapted units, such as crossover.

4 Task Suite: Signal Reproduction

The question addressed here is whether it is possible
to obtain a useful bias by first solving a similar but
smaller problem. Thus, a task must be found of which
instances of variable difficulty can be generated. Fur-
thermore, since we investigate how recurrent neural
networks can be evolved, the task should test the capac-
ity specific to recurrent networks of constructing and
using functional internal state [2], so that the potential
of RNNs to generate and use internal state is exploited.
A simple task that fits these criteria is signal reproduc-
tion, described as follows, see figure 2.

During an initial period [0...] >, a signal of dura-
tion I = 1 is presented. Since the period At after
which the state of the network is updated equals 0.05,
[ corresponds to twenty updates of the network state.
Next, during a time lag [I...l + lag >, a distractive
signal is administered. Then, during the final period
[l +lag...lag+ 2l >, a base signal (zero) is presented,
and the output of the network is monitored. The goal
of the task is to reproduce the input signal during this



final period. Since the input signal is not available at
this time, the network must consider the input signal,
remember it in its internal, and subsequentially repro-
duce it. In the experiments presented here, the input
signal is either zero or one. The duration of the dis-
tractive time lag lag is a multiple of I; it consists of
randomly chosen zeros and ones, and may change only
at multiples of [. The performance on the task is eval-
uated as the root mean square error (RMSE) over 10
sample points in the final period.

5 Evolutionary Method

Neural networks are encoded by trees containing the
operators that have been described in section 2. The
trees are of varying arity; its nodes may have one, two,
or three children, depending on the operator they con-
tain). Since such a tree completely specifies a net-
work, we can apply evolutionary methods that oper-
ate on tree-shaped specifications, such as genetic pro-
gramming, see e.g. [11]. Genetic programming employs
two variation operators, called crossover and mutation.
Crossover takes two trees, randomly selects a node from
each, and exchanges the subtrees that have these nodes
at their root. Mutation here visits all nodes in the tree
and changes the operator they contain with probability
%, where n is the number of nodes in the tree.

The evolutionary process starts by generating a ran-
dom initial population of size popsize, containing trees
with a number of operators chosen uniformly from
[10...25]. Next, at each generation, popsize speci-
fications are randomly selected from the population,
and paired up to create a new generation by means of
crossover, followed by mutation with P = 0.1. All in-
dividuals in the newly generated population are then
evaluated on the task. Next, all individuals are com-
pared to the current population. In addition to the
evaluation on the task, this comparison involves two
other objectives: the size of the specification tree,
which should be minimized, and a diversity objective
[4], which measures the average squared Hamming dis-
tance of the specification to the specifications in the
current population.

To compare the multiple objectives of one individ-
ual with that of another, techniques from evolutionary
multi-objective optimization may be used, see e.g. the
overview by Fonseca and Fleming [8] for an introduc-
tion. Here, we follow Fonseca and Fleming [7] by count-
ing the number nrdom of individuals that dominate a
given individual as a basis for selection. An individ-
ual A dominates another individual B if it performs at
least as well on all objectives, and better in at least one
objective. We sort the population according to nrdom,
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Figure 3: Root mean squared error on the lag 1 task of
standard search and search biased by solutions
to the lag 0 problem.

and select the top ranking popsize individuals to yield
the next generation.

6 Results

In the first experiment, the most basic case of solving a
simpler problem first is investigated. The first problem
in the sequence of signal reproduction problems is the
lag 0 problem, where the input signal has to be repro-
duced directly after the first time step, i.e. there is no
time lag in between the presentation of the input signal
and the period during which the outputs are monitored.
In the next, more difficult problem, a time lag of dura-
tion 1 is inserted between the input and output periods.
During this time lag, the input signal randomly takes
a value of either zero or one. Each network is tested on
ten samples for both the zero and the one input signal,
so that a network that uses the input during the time
lag to determine its output is unlikely to be successful.
For the increasing problem size experiment, we set up
the simulation such that when a performance threshold
is reached (RMSE 0.1), the problem size is increased
from the lag 0 to the lag 1 problem. During a problem
size increase, the best solution from the population is
preserved, the rest of the population is discarded, and
a new population is created that consists of random
specifications (75%) and copies of the best solution to
the lag 0 problem (25%). In the comparison experi-
ment, the standard search to solving the lag 1 problem
is taken, i.e. the lag 1 problem is used during the whole
experiment. For both experiments, ten runs were per-
formed.

Figure 3 shows the results for both experiments. The
standard approach, solving the lag 1 problem, starts
off with a slowly decreasing error. The performance
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Figure 4: Example of a run in the experiment with prob-
lem size increasing from lag 0 to lag 10.

gradually improves, but does not get better than an
RMSE of 0.2 on average within the duration of the
experiment.

In the increasing problem size experiment, the lag 0
first has to be solved with an accuracy of RMSE 0.1.
Different runs solve this problem at different points in
time, of course, but all of the ten runs solved the prob-
lem within 39,000 evaluations. After generating a new
initial population including copies of the solution to
this problem, the lag 1 problem can be addressed. The
bias conferred by this technique is clearly helpful. Not
only does the biased search start off at a better per-
formance (around 0.2, the final value reached by the
standard approach), but the error continues to drop.
This indicates that the lag 0 solutions with which the
populations were seeded were not merely reasonable
solutions to the lag 1 problem, but that aspects of
these specifications could be fruitfully applied in the
lag 1 problem. As the graph shows, the performance
improvement due to the bias from the lag 0 problem
more than compensates for the time spent on solving
this problem first.

In the second experiment, the principle of solving a
small problem and using the solution to solve a more
difficult problem is applied repeatedly. After solving
the lag 0 problem, the search continues to the lag 1, 2,
3...10 problems. When the lag 10 problem is reached,
the problem is kept fixed, so that the search can con-
tinue to improve performance on the problem.

Figure 4 shows an example run of the repeatedly in-
creased problem size experiment. After 28,500 evalu-
ations, performance on the lag 0 problem reaches the
0.1 threshold. Consequently, the problem size increases
to the lag 1 problem. This results in a drop in perfor-
mance to an RMSE of around 0.25. Within another
25,000 evaluations however, the lag 1 problem is solved,
and the problem size increases to 2. The process con-
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Figure 5: Root mean squared error on the lag 10 task of
standard search and search biased by sequen-
tially solving the lag 0 through lag 10 problems.

tinues until problem size 10 is reached. The problem
size then remains constant, and eventually the perfor-
mance threshold of RMSE 0.01 is reached and the run
terminates.

Figure 5 shows the performance on the lag 10 problem
of the five (out of ten) runs that reached this prob-
lem size before 200,000 evaluations. One of these runs
found a solution very early on (marked by the ’+7); this
solution was found during the search for the lag 0 prob-
lem, but since its performance was below RMSE 0.1 on
the subsequent problems as well, the problem size in-
creased at each of the ten following generations. Subse-
quently, the performance threshold of 0.01 was reached,
and the run terminated. The dashed line shows the av-
erage performance of the other four runs. The final
performance is even better than for the lag 1 experi-
ment, which can be explained by the fact that only the
five runs reaching problem size 10 are measured, while
performance in the lag 1 experiment is averaged over
all of the ten runs. Of the five runs that reached prob-
lem size 10, four reached the performance threshold of
RMSE 0.01, and thus solved problem.

The comparison experiment faces the difficult task of
discovering the dependency between the input signal
at the first time step, the output signal at the final
time step, and the resulting fitness. This relation is
obfuscated by the ten time steps during which a ran-
dom signal is presented, and is therefore very difficult
to discover, as reflected in the average error, which re-
mains above 0.35. All errors remained above 0.3, and
thus none of the runs reached the performance thresh-
old of 0.01.

The transfer shown here is admittedly rather direct,
and the problem is somewhat basic compared to the
complexity of the evolutionary machinery. The exper-
iments should be seen as a first demonstration of the



principle of using small problems to establish useful
bias for solving larger related problems. While both
directly [14] and indirectly [13] encoded solutions to re-
lated problems have been used before, cellular encoding
appears particularly suited for this purpose. Perhaps it
may be possible to apply the potential of this approach
to problems for which network architectures would oth-
erwise be practically impossible to find.

7 Conclusions

Architectures and weights for recurrent neural net-
works may be found by searching the space of such
networks. Since this space is very large, a bias is re-
quired to guide the search. In the current article, we
investigate the use of smaller, related problems to es-
tablish this bias.

We described and used a variant of Gruau’s cellular
encoding that uses both node operators and edge op-
erators. Thus, more control over connections between
neurons is achieved compared to the original node en-
coding approach. The motivation for using an indi-
rect encoding of the network is that the rules for the
construction of networks found this way may be more
suitable for capturing information about network con-
struction from related problems than a direct encoding.
The problem on which the approach was tested is se-
quence reproduction with a distractive time lag of vari-
able length. First solving the zero time lag problem
considerably improved performance on the lag 1 prob-
lem compared to starting on the lag 1 problem directly.
Thus, a useful bias was gained from solving the small
version of the problem first. The same technique was
applied repeatedly, up to lags of 10 time steps. The
repeated transfer of solutions from small problems to
larger problems sizes allowed the evolutionary search
process to find solutions to the lag 10 problem, while
the comparison experiments that attempted to solve
this problem directly failed to do so.

The results are an initial demonstration of the idea that
the difficult problem of searching for recurrent neural
network architectures and weights may be addressed
by incrementally establishing useful biases that guide
the search.
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