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Abstract. Isaacs’ treatise on differential games was a break-through for
the analysis of the pursuit-and-evasion (PE) domain within the context
of strategies representable by differential equations. Current experimen-
tal work in Artificial Life steps outside of the formalism of differential
games, but the formalism it steps into is yet to be identified. We in-
troduce a formulation of PE that allows a formalism to be developed.
Our game minimizes kinematic factors and instead emphasizes the in-
formational aspect of the domain. We use information-theoretic tools
to describe agent behavior and implement a pursuit strategy based on
statistical decision making; evaders evolved against this pursuit strategy
exhibit a wide range of sophisticated behavior that can be quantitatively
described. Agent performance is related to these quantifiables.

1 Introduction: Body and Mind in Pursuit and Evasion

Researchers in the field of Artificial Life (ALife) frequently turn to the domain
of pursuit-and-evasion (PE) to study the (co)evolution of complex agent behav-
ior. PE is of particular interest because it provides a parsimonious framework of
agent interaction as well as ethological interest. Isaacs’ ground-breaking theory
of differential games [15] shows that, for a great many forms of the PE game, op-
timal (minimax) player strategies can be derived analytically from knowledge of
the players’ abilities. The applicability of differential game theory is constrained
by two requirements: 1) a finite set of state variables must completely capture
the instantaneous description of the game (e.g., agent positions, velocities, ac-
celerations, etc.) necessary to compute the future unfolding of the game—the
game is one of perfect information; 2) agent strategies must be expressible as
differential equations that operate on these state variables. These constraints
make the theory (and its more modern versions, e.g., [8]) a powerful model of
agent kinematics (e.g., speed, maneuverability, etc.), as kinematics are partic-
ularly amenable to differential analysis. Indeed, differential game theory was
constructed to answer questions about agents that are distinguished primarily
in their kinematic abilities.

Much AlLife research, however, steps outside of the formal assumptions made
by Isaacs’ theory; evolvable sensory apparatus [5] and evolvable information-
processing substrates for agent control, such as artificial recurrent neural net-
works, move the PE domain beyond the purely kinematic realm to include an



informational one as well. Clearly, differential game theory remains an influen-
tial formalism in the design and analysis of experiment kinematics. But, what
formalism has been adopted to address the informational aspects of current ex-
perimental work? The lack of a rigorous metric of agent behavior has been rec-
ognized [7]—how do we ascertain and describe the sophistication of an agent?
Recently, information-theoretic tools have been used to measure and adjust en-
vironmental complexity to facilitate agent learning in various domains, including
PE [11, 13]; information theory has also come into use for the measurement of
agent behavior, for example in a discrete state space [23] and a “linear” form
of the PE game [10]. Here, we will introduce the use of information theory to
measure agent behavior and environmental complexity in a two-dimensional,
continuous-space pursuer-evader domain.

The purpose of replacing (stateless) minimax strategies with evolvable agent
controllers is to place the pursuit and evasion roles within a coevolutionary
setting such that an arms race between ever more sophisticated evasion and
pursuit strategies arises [16, 19, 24, 6, 7, 12, 26]. Unfortunately, the envisaged
coevolutionary arms race towards complexity is yet to be substantially realized,
or, at least, observed; a number of problematic issues surrounding coevolutionary
techniques are known to exist, such as the Red Queen Effect [6], mediocre stable-
states [22], and the instability of two-population coevolution [4, 2, 9].

If we want an arms race to complexity, we must consider the three compo-
nents that are responsible for the behavior of the typical PE agent: its sensory
apparatus, kinematics, and processing abilities. Which of these three components
possess the potential when evolved to engender an arms race to complexity? How
might asymmetries between the pursuer and evader in terms of some of these
components (say, their sensory and kinematic abilities) diminish the usefulness
of evolving others (say, their computational abilities)? We assert that the role
of processing ability is yet to be appreciated in its own right—that it has been
overshadowed by kinematic and sensory factors.

In this paper, we present a simple formulation of the two-dimensional pursuer-
evader game that, by giving the players kinematic parity and a form of sensory
asymmetry, requires them to model opponent behavior in order to achieve opti-
mal performance (in the game-theoretic sense). The behavior of an agent deter-
mines the complexity of the statistical model required to adequately represent it.
The success of an agent reflects the power of its representational and modeling
abilities. In this sense, there exists the potential for an arms race in complexity.

We begin, however, by using simple evolution to evolve evaders against hand-
built predictors that employ statistical tools to model evader behavior. The ques-
tions of interest are: what happens when the statistical model of the pursuer is
poor? What kind of behavior must an evader exhibit to defeat statistical predic-
tion of some finite power? Would such evasion behavior resemble our intuitive
understanding of protean behavior [19]7 Our results show that evaders are able
to evolve behaviors of substantial sophistication when placed in opposition to a
powerful pursuit strategy.

We start with a formal definition of the game and discuss some game-theoretic



features. We review the information-theoretic tools used to measure behavior.
Experimental results are then discussed. Finally, we point to future work.

2 A Game of Incomplete Information

2.1 Definition

Our game is played in the real-valued, unbounded (two-dimensional) plane. Both
agents move with simple motion: each agent moves at a constant velocity and is
able to instantaneously change its direction by any amount. In our game, both
agents move at the same velocity of one body-length per time-step. While the
agents are able to freely pick a direction, they can only do so at the beginning of
each time-step; they must then commit to moving in their chosen directions for
the duration of one time-step. The pursuer can see the evader’s current location,
but the evader is completely blind. Thus, the pursuer has the opportunity to
respond to the behavior of the evader, while the evader’s behavior is ballistic.

Each game begins with the pursuer and evader occupying the same location,
the plane’s origin. Because we are interested in statistical characterizations of
agent behavior, each game must be long enough for a reasonably representative
sample of behavior to be made with respect to the type of statistic we wish
to collect. (In practice, the behaviors of our evolving evaders quickly achieve
steady state—initial transients are either very short or unfold so slowly as to be
indistinguishable from steady-state behavior for our purposes.)

Thus, the terminating condition occurs when the final time-step transpires,
rather than when the evader gets tagged or reaches some “escape” distance. The
evader’s job is to maximize the average distance between itself and the pursuer
over the course of the game. The pursuer’s job is to maximize the number of
tags, which is subtly more general than minimizing distance, as we will discuss.
A tag occurs when the pursuer comes within one body-length of the evader.

2.2 Game Theoretic Features

This game is designed to require players to induce models of opponent behav-
ior (the type of model is discussed below). Here we explore the game-theoretic
features that create such conditions. To begin, we wish to eliminate kinematic
asymmetries that may alone favor one agent over the other. For this reason, we
give both players identical kinematic abilities: simple motion with equal veloci-
ties. The choice to make our evader blind appears to contradict the care taken to
give the agents an equal footing. To understand this choice, let us consider what
happens if the evader has the ability to see. Further, let us assume the predictor
is strictly trying to minimize distance, such that the game is clearly zero-sum.
If the sightedness of both players is common knowledge [18, 14], i.e., known
by both players, then this modified game clearly calls for a minimaz strategy
[15] to be used. The minimax strategy calls for the pursuer to move directly
towards the evader and the evader to move directly away from the pursuer. Any
divergence from this strategy by an agent gives an advantage to its opponent;



if both agents observe their optimal strategies, then the distance between them
does not change. Given our kinematic constraints, minimax allows neither the
evader to increase its distance from the pursuer, nor the pursuer to near the
evader, let alone tag it—a very dull game, indeed. This is why agent kinematics
are made asymmetrical in most experimental work; the possibility of “cognitive”
asymmetry is thus marginalized.

We can now appreciate what happens if the evader is blind. Because the
evader is unaware of the pursuer’s location, it can not simply move away. Instead,
the evader must employ a mixed strategy that picks moves probabilistically. If
the pursuer knows this to be the case, through common knowledge, then the
pursuer is best advised to adopt a statistical decision process [27] based upon
observations of the evader’s behavior. If the pursuer’s goal is not only to decrease
the distance between itself and the evader, but also to do so as quickly as possible
(in order to maximize the number of tags), then pursuit based upon statistical
observation will, on average, very likely outperform (and certainly do no worse
than) the simple pursuit strategy that minimax specifies above, provided that
the statistical observations are suitably accurate. If the evader knows, again
through common knowledge, that the pursuer is using such a strategy, then it is
no less motivated to behave probabilistically.

In his discussion of pursuit games with incomplete information, Isaacs [15]
explains that the importance of accurate prediction diminishes as the distance
between opponents increases; if the “probability cloud” of possible future evader
locations is small compared to the distance between the evader and the pursuer,
then the cloud is reasonably treated as a single point by the pursuer—obviating
the need to predict and allowing the pursuer to revert to the simple strategy of
moving directly towards the evader. On the other hand, if the two agents are very
close, particularly if their regions of possible future locations overlap, accurate
prediction is of utmost importance. With spatial proximity, the statistical nature
of the game becomes more prominent. For this reason, we choose to begin our
game with the pursuer and evader on top of one another.

3 Observation and Statistical Reasoning

Because the evader moves at a constant rate, and commits to some direction
of travel for the duration of each time-step, the pursuer need only observe the
sequence of direction choices that the evader makes; if the pursuer accurately
models the evader’s decision process, then effective pursuit is possible. Though
the directions in which the agents move (and the locations they occupy) vary
continuously, the pursuer’s sensing of movement has limited resolution: each
move of the evader is perceived by the pursuer as being in one of eight directions,
as shown in Figure 1. Thus, the pursuer’s statistics model the symbol string
generated by the evader’s behavior, and not the evader’s behavior directly.

To predict the future path of the evader, the pursuer uses its statistical model
to generate the symbol string it expects the evader to produce in the coming
time-steps. The pursuer then uses this symbol string to project the expected



trajectory relative to the evader’s actual current location. The pursuer then acts
according to its policy, detailed below. Even if the symbol string is predicted
with complete accuracy, the projected trajectory only approximates the path
the evader will actually take, due to the pursuer’s limited ability to sense and
represent heading. Nevertheless, the eight-symbol resolution is high enough for
adequate approximation in practice.

In its capacity as model-builder, our hand-built pursuer uses techniques that
we, as experimenters, can use to quantitatively describe an evader’s behavior.
Our analytic approach comes from information theory [25]. The model of an
evader is built by computing nt"-order statistics from observations of behavior.
The order of the statistic refers to the amount of conditioning applied when
computing the probabilities of various symbols occurring. The higher the order
of our statistics, the more we can refine our expectations of what will happen
in the future based on what we have observed further in the past. For example,
a 0-order statistic states the probability of a symbol occurring, p(S), without
conditioning—based strictly on the number of times it is observed; if 10% of
the symbols observed are the symbol ‘X’ then the 0-order probability of ‘X’ is
p(X) = 0.1. A 1-order statistic states the probability of a symbol conditioned
with respect to the symbol that immediately precedes it; if the symbol ‘Y’ is
followed by ‘X’ 60% of the time, then one of the 1-order probabilities of ‘X’ is
p(X |Y) = 0.6. We now know more about when to expect the symbol ‘X’.

The entropy of an observed sequence describes the over-all predictability of
the sequence, given a particular order statistic; higher entropy values indicate
less predictability. Certain symbol sequences require higher order statistics to be
taken than other sequences to achieve the same level of predictability—the same
entropy. The minimal amount of behavioral history, or conditioning, required to
maximize predictability is an indication of a sequence’s complexity. Of equal im-
portance is the degree to which a sequence becomes less predictable as the order
of the statistic is decreased. These two characterizations of a symbol sequence
provide a quantifiable description of behavior.
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Fig. 1. Pursuer sensing of evader movement. Each turn of the evader generates one of
eight symbols, depending on the angle of the turn relative to evader’s previous heading.



4 Experiments

4.1 Setup

Evolving Evader Using an enhanced version of GNARL [3], we evolve artificial
recurrent neural networks to control our evader agent. The GNARL algorithm
adapts Evolutionary Programming (EP) techniques to the evolution of neural
networks. Since the evader is blind, there are no inputs to the network; a single
bias node, which has a constant activation, is used. The network has a single
real-valued output that indicates the turn angle for the next move. Networks
are allowed to have as many as 60 hidden units and 400 weights. These limits
are not known to be optimal in any sense (casual examination of the larger
evolved networks shows around 50 hidden nodes but only 100 weights). The
initial population is comprised of random networks that have between 5 to 15
hidden units and 25 to 100 weights. The population size is 100. The fitness of a
controller network is equal to the average distance it is able to maintain between
the pursuer and the evader over the course of a game.

Hand-Built Pursuer The evader controller networks are evolved against a
hand-built pursuit strategy that uses statistical modeling of evader behavior.
This pursuit strategy is controlled by two parameters: 1) the power of the sta-
tistical model, which is specified by the order statistic, o, and 2) the number of
time-steps into the future, ¢, that will be predicted by the model. The more the
pursuit strategy looks into the future, the more opportunity it has to discover
and exploit short-cuts to predicted future locations of the evader. But, with
increased values of ¢ comes increased risk of being misled by poor prediction.

At each time-step of the game, the pursuit strategy proceeds as follows:
using the statistical model of order o, predict the evader’s movement from its
current location for ¢ time-steps into the future; this yields the path, p, of points
p = {p1,p2, ..., pt}. Assuming the predictions to be correct, we know when the
evader will arrive at each point, p;, in the path, p. If there exist any points to
which the pursuer, by heading directly to them, can arrive before the evader,
select the earliest such point in the path. Otherwise, move towards the first point
on the path, p;.

The pursuer computes its statistical model of evader behavior tabula rasa for
each game. Because the model requires a suitably large sample of behavior to
give meaningful predictions, we preface each match between the pursuer and an
evader with a “warm-up” period of ten thousand time-steps during which the
statistical model of the evader’s ballistic behavior is induced. The length of this
warm-up period represents a practical compromise between sample quality and
simulator speed. After the model is built, the players are placed on the origin of
the plane and the game proper begins, which lasts for one thousand time-steps.

4.2 Results

We outline above a statistical formalism with which we can characterize evader
behavior, and describe how we embed this formalism into our hand-built pursuit



strategy. We now evolve evaders against this strategy. By thus inserting our
statistical formalism into the evolutionary process, however, we lose, ironically,
the ability to use it as an objective measure of experimental results; while we do
provide some quantitative results below, we must also pay careful attention to
the qualitative results for meaningful understanding. Our formalism can more
properly be used for agent analysis once both the evader and pursuer are made
to coevolve; this is the subject of future work.

Pursuer Performance Figure 2 (left) captures a moment during a match. The
square and the large circle represent the positions of the pursuer and evader at
time ¢, respectively. The small circles are the pursuer’s prediction (using 12%*-
order statistics), made at time ¢ — 1, of the evader’s path for the next twelve time
steps. We see that the evader is exactly where the pursuer expected it to be at
time ¢. The large ‘X’ represents the point on the evader’s path where the pursuer
expects to most quickly intercept the evader; it is towards this point that the
pursuer moved directly from time-step ¢t —1 to time ¢. Of course, interception will
occur only if the predictions are correct. The evader’s behavior might instead
lead the pursuer into a false expectation of future locations—the only method
by which the evader can open space between itself and the pursuer; this is what
we see in Figure 2 (right), which shows a much weaker pursuer (using 3"%¢-order
statistics) playing against the same evader at the identical point in the match.
Clearly, and to its detriment, this pursuer has a much different model of the
evader and very different expectations of future evader behavior.
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Fig. 2. Pursuit using 12t"-order statistics (left) and 3"-order statistics (right).

Evader Behavior Though the evaders are blind, they too must model their
opponent to succeed. In this case, the model is induced through evolution and
reflects the settings of the pursuer’s two parameters: the order of pursuer’s sta-
tistical observations, and the number of time-steps predicted into the future. A
very wide variety of evader behaviors evolve in our experiments. The trajecto-
ries of two different evaders, A and B, are shown in Figure 3 (top left and right,
respectively). Both were evolved in the same run with pursuit parameters set
to t = 37 and o = 4; evader A is the best of generation 825, while B arrives
much earlier in the run and is the best of generation 85. Evader A has a highly
irregular, though smooth, trajectory that contains tight loops, broad and narrow
turns, and some relatively straight stretches. Evader B’s behavior is extremely



regular (in fact periodic) and jagged, and displays two frequencies of movement
(one superimposed on the other), which gives it a hint of self-similarity. Both
evaders clearly maintain non-trivial internal state.

Below each trajectory, we graph the entropy of the trajectory (dotted line),
the average distance maintained between the evader and the pursuer (solid line),
and the average tag rate (dash-dot line); these values are given for a pursuer with
parameter ¢t = 37 and parameter o ranging from 0 to 9. Though the entropy of
evader B, when measured with 0-order statistics, is actually higher than that
of evader A (approximately 1.9 for B and 1.3 for A out of a maximum possible
entropy of 3.0), the entropy of evader A falls only slightly as the order statistic
is increased, whereas the entropy of evader B drops dramatically. These entropy
curves reflect what is visibly obvious: evader A is very difficult to predict and
evader B is very easy. Particularly, once the pursuer models evader B as a 6t"-
order process, the regular behavior of the evader becomes evident: the observed
entropy falls to a mere 0.16, the average distance the evader is able to maintain
from the pursuer drops to 0.37 body-length units, and the pursuer’s tag rate
jumps to a very effective 0.98%. Changes in evader A’s performance are evident
as modeling power is increased, as well, but are not nearly as dramatic.

These graphs suggest that proteanism—adaptively unpredictable behavior—
may be envisioned as a continuum; a behavior may be protean relative to a
weak statistical model but not to a more powerful one. While a high entropy
value implies a behavior that is difficult to predict, it does not necessarily imply
an effective evasion strategy; Isaacs recognizes that, in a game of incomplete
information, a tension may exist between moves that create uncertainty and
moves that open distance. Good evasion behavior consists of a balanced mix of
these types of move. Thus, while evader B has a higher 0-order entropy than
evader A, its behavior does not produce such a mix and poorly leverages the
uncertainty it generates.

As a simple control experiment, we modify the pursuer to move directly to-
wards the evader’s current location (as in minimax); the appropriate minimax
response, i.e., straight fleeing, is evolved by the evader. This provides further em-
pirical evidence that evolution is sensitive to the pursuit strategy and creates eva-
sion behaviors accordingly. Thus, effective evasion is not synonymous with com-
plex evasion; the complexity of evasion behaviors we see in our main experiment
reflect the sophistication of our hand-built pursuit strategy. In coevolutionary
frameworks, an absence of evader “proteanism,” as conceived here, indicates a
similar lack of pursuer sophistication.

5 Conclusion

We introduce a formulation of the pursuer-evader game that emphasizes its infor-
mational component. We discuss statistical tools that enable rigorous analysis
of evader behavior and, thereby, allow the construction of a powerful pursuit
strategy. Evolution against this pursuit strategy results in evasion behaviors of
considerable sophistication. Agent performance is relatable to quantifiable fea-
tures of behavior.
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Future work will replace the hand-built statistical mechanism of the pursuer
with a coevolving substrate. The generality of our hand-built pursuer is what
evokes evasion behavior with (often complex) statistical structure. But, unlike
the blind evaders, pursuers can not operate ballistically—they must respond
to observed behavior. If coevolving pursuers are not exposed to a wide enough
diversity of evasion behavior, they will likely evolve pursuit strategies that lack
generality; these specialized strategies will be suboptimal in the game-theoretic
sense. Nevertheless, our statistical tools will be of particular use in tracking
coevolutionary progress [9]. Finally, we will investigate sighted evaders.
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