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ABSTRACT
Several techniques have been developed for allowing genetic
programming systems to produce programs that make use
of subroutines, macros, and other modular program struc-
tures. A recently proposed technique, based on the“tagging”
and tag-based retrieval of blocks of code, has been shown to
have novel and desirable features, but this was demonstrated
only within the context of the PushGP genetic programming
system. Following a suggestion in the GECCO-2011 publi-
cation on this technique we show here how tag-based mod-
ules can be incorporated into a more standard tree-based ge-
netic programming system. We describe the technique in de-
tail along with some possible extensions, outline arguments
for its simplicity and potential power, and present results
obtained using the technique on problems for which other
modularization techniques have been shown to be useful.
The results are mixed; substantial benefits are seen on the
lawnmower problem but not on the Boolean even-4-parity
problem. We discuss the observed results and directions for
future research.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Procedures, functions, and
subroutines

General Terms
Algorithms

Keywords
Genetic programming, modularity, tags, automatically de-
fined functions, lawnmower problem, parity problem

1. INTRODUCTION
In order for genetic programming [10] to become a scal-

able, general-purpose automatic programming methodology,
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its practitioners will have to have access to methods by which
they can automatically evolve programs that incorporate
modular structures such as functions, macros, subroutines,
and co-routines. A variety of methods have been developed
for allowing genetic programming to evolve such programs;
the most well known of these is Koza’s “Automatically De-
fined Function” (ADF) framework [10, 11] but a variety of
other approaches have also been developed [9, 10, 1, 8, 19,
2, 15, 17, 18, 7, 26].

The methods for genetic programming with modules that
are most widely used require pre-specification of the module
“architecture”—that is, of the number of modules and the
numbers and types of arguments that they take—or other-
wise limit the generality of the module architectures that
can arise automatically during evolution. The exceptions to
this generalization have mostly involved much more cum-
bersome and ad hoc mechanisms to support the evolution
of architectures. For example, Koza’s “architecture-altering
operations” permit one to evolve populations of programs
with diverse architectures, and they allow for architectures
to become more complex over evolutionary time, but many
of the architectural modifications in Koza’s framework re-
quire elaborate and potentially destructive repair strategies
to be applied after architectural changes [12]. For example,
if an architecture is altered by deleting an automatically
defined function, or by changing the number of arguments
that an automatically defined function takes, then all calls
to the deleted or modified function must be changed; it is
not generally clear how they would best be changed, and the
system designer’s decisions on these matters will influence
the power of the evolutionary system.

A recently-developed alternative technique for evolving
programs that use modules, based on the use of “tags,” has
shown some promise insofar as it permits arbitrary architec-
tures to evolve, even though the changes that must be made
to the genetic programming system are relatively few and
relatively simple [24, 21]. The relevant notion of “tag” comes
from the work of Holland, who used the term to denote ini-
tially arbitrary identifiers that come to have meaning over
time in many different kinds of complex adaptive systems
[5, 6]. He described examples of tagging involving biologi-
cal and cultural systems, ranging from immune systems to
armies on a battlefield, and he argued that tag-based match-
ing is a general tool for the support of emergent complexity.
The concept has been applied by several researchers over
the last decade or so to the study of the emergence of co-
operation and altruism (e.g. [16, 3, 22]), but its application

815



to the emergence of modularity in genetic programming is
relatively new.

Tag-based modularity in genetic programming has been
described in the literature previously, but only in the con-
text of genetic programming with the Push programming
language, using the PushGP genetic programming system
[20, 25, 23]. Because “tree-based” genetic programming, in
which one evolves programs in the form of Lisp-like symbolic
expressions, is currently among the most popular forms of
genetic programming, our goal in the research described in
this paper is to see if and how the ideas of tag-based modu-
larity can be applied in the tree-based genetic programming
framework. A simple scheme for doing this was described
briefly in the prior work on tag-based modularity [24]; here
we describe this simple scheme in detail, including nuances
not presented in the prior work, present results of its per-
formance on two problems, and discuss its limitations and
possible extensions.

In the following sections we first briefly describe the tag-
based modularity technique as it has been previously applied
in the context of PushGP. We then describe the simplest
version of the idea that can be easily applied in tree-based
genetic programming. Following this, we present the results
of runs of the system that we have described on the lawn-
mower and Boolean even-4-parity problems. The mixed re-
sults that we document—positive for tags on the lawnmower
problem but negative for tags on the Boolean even-4-parity
problem—lead to a discussion of extensions and open issues
in the subsequent section. We conclude with a discussion of
suggestions for future work in this area.

2. TAGS IN PUSH
The previous work on tag-based modularity in genetic pro-

gramming has been conducted in the context of the PushGP
genetic programming system, in which the evolved programs
are expressed in the Push programming language [20, 25,
23]. Push is a stack-based programming language with an
independent stack for each data type, including a stack for
code and a separate “exec” stack for code that is queued for
execution. Full descriptions of the Push programming lan-
guage and of PushGP are beyond the scope of the present
paper, but sufficient detail will be presented here to describe
how programs with tag-based modules can be evolved in
PushGP.

The essential idea of tag-based modularity is that a block
of code—a module—is tagged with an initially arbitrary iden-
tifier that permits retrieval based on possibly-inexact match-
ing. For simplicity the tags used in prior work have been
positive integers, and the closest match has been determined
by numerical difference in one direction. If we refer to a tag
tref then the closest match, among the tags that have been
used to tag values, will be the smallest tag tmatch for which
tref ≤ tmatch. If no used tag is greater than or equal to
tref then we consider the numerically lowest tag to be the
closest—that is, we wrap around. For example, if the tags
that have been used to tag values are {123, 456, 789} and we
retrieve a value by referring to tag 200, then we will retrieve
whatever value had been tagged with 456. A reference to
tag 800 will retrieve the value tagged with 123.

The PushGP implementation of tag-based modularity in-
cludes instructions that can tag any data item and retrieve
items by closest match to a tag. Because code in Push is also
data, tag-based modularity can be implemented by allowing

the tagging of code and the tag-based retrieval of code to
the exec stack, from where it will then be executed. For
example, the following Push program1 first defines and then
twice uses a tag-based module for squaring an integer:

(tag.exec.123 (integer.dup integer.*)

3 tagged.100 tagged.107)

The first instruction here, tag.exec.123, is produced by an
“ephemeral random instruction” token in the instruction set
that is much like the ephemeral random constants employed
in traditional genetic programming systems [10] except that
here we generate instructions that incorporate randomly-
chosen tag values. This particular tag instruction pops and
tags the item on top of the exec stack (which will be the
expression (integer.dup integer.*) when this instruction
executes) with the tag 123. Then 3 will be executed, and
since this is an integer literal it will be pushed onto the inte-
ger stack. The call to tagged.100 will retrieve the item that
has been tagged with the tag that most closely matches 100
and push that item onto the exec stack, from where it will
then be executed. The retrieved item will be (integer.dup

integer.*) in this case; when executed this will duplicate
the top item on the integer stack and then multiply the top
two items, effectively squaring it and leaving 9 on top of
the integer stack. Next, the call to tagged.107 will be pro-
cessed, with the final result on the integer stack being 81.

Several potentially problematic special cases that might
arise in tag-based modularity are handled in natural ways
in the Push implementation but may require more elabo-
rate solutions in tree-based genetic programming, as will be
discussed below. For example, if one attempts to retrieve a
value based on a tag when no data has yet been tagged then
the natural approach in Push is simply to treat the retrieval
instruction as a “no-op,” leaving the stacks unchanged. In
tree-based genetic programming every sub-expression must
return a value, so some value must be returned from a re-
trieval expression in every circumstance. Similarly, it is quite
possible for programs that use tags to loop/recurse infinitely,
but because many of Push’s other code-manipulation in-
structions also permit the expression of non-terminating al-
gorithms, all Push implementations already enforce execu-
tion step limits and allow for the delivery of results from the
stacks even when the step limits have been reached.

It is also relevant that in Push, arguments are passed to
instructions via stacks and values are returned from instruc-
tions via stacks. This means that a tagged chunk of code
may access any number of inputs (which could be considered
to be function arguments) from the stacks even though there
is no syntactic restriction on the code that corresponds to the
number of arguments that it may take. Indeed, a mutation
to code that gets tagged may cause it to“take”more or fewer
arguments, but this need not be reflected anywhere else in
the program’s syntax. A tagged chunk of code may also “re-
turn” multiple values to its caller via the stacks, without any
requirement that this be explicitly indicated or maintained
in the program’s syntax.

As a result of the Push features described above, the in-
corporation of tag-based modularity into PushGP is partic-

1Different implementations of Push use slightly different no-
tational conventions; for example some use “ ” in place of “.”
and have somewhat different instruction names. Here we
use the notational conventions that have been used most
frequently in prior Push publications.
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ularly simple and the resulting system is particularly flex-
ible. Any number of tagged modules, each of which takes
any number of arguments and returns any number of values,
can arise during evolution without any pre-specification of
the numbers of modules or arguments. The “closest match”
semantics ensures that any reference to a tag will retrieve
something as long as something has been tagged, and the
number and targets of these references may grow gradu-
ally over evolutionary time. The results of previous studies
have shown that this leads to problem-solving efforts for
the lawnmower and “dirt-sensing, obstacle-avoiding robot”
problems that scale well with problem size, indicating that
tag-based modularity may be a powerful while nonetheless
simple method for evolving modular programs more gen-
erally [24, 21]. But because tree-based representations are
currently more popular than Push among genetic program-
ming researchers and practitioners, the extent to which such
results can be obtained in tree-based genetic programming
is clearly of interest.

3. TAGS IN TREES
The original publication on tag-based modularity in ge-

netic programming [24] included the following suggestion for
incorporating tags into tree-based genetic programming sys-
tems:

One simple idea is to support calls to one-argument
functions of the form tag-i which act to tag the
code in their arguments with the tags embed-
ded in their names (and presumably return some
constant value). One would have to alter the sys-
tem’s code generation routines to produce these
function calls, and also to produce calls to zero-
argument functions of the form tagged-i. Calls
to the tagged functions would branch to the code
of the tagged code with the closest matching tag
(or presumably return some constant value if no
code had yet been tagged). This would pro-
vide a form of dynamic function definition, in
which function reference occurs through inexact
tag matching, but it would only produce zero-
argument functions. It could also produce un-
bounded recursion, so some form of execution
step limit would have to be imposed.

In the work described in the present paper we have essen-
tially implemented and tested this idea, discovering some of
its weaknesses in the process.

In the remainder of this section we describe the issues
that we faced in implementing these ideas and the ways that
we resolved them for the sake of the runs described in the
following sections. Other possible approaches are described
after the presentation of those results.

3.1 Return values of tagging operations
In Push a tagging operation, implemented with an instruc-

tion like tag.exec.123, tags an item taken from a stack but
it need not return any value to any stacks as a result of this
operation. In contrast, in tree-based genetic programming
it is generally required that all subtrees return values, so a
call to a function of the form tag.i will have to return some
value to its caller.

As suggested in the quotation above one option is to re-
turn some constant value, chosen to be a reasonable default

value for the problem being solved (e.g. possibly 0 or false).
Another reasonable option is to evaluate the code that is be-
ing tagged once during the tagging operation and to return
the value produced by that evaluation.

In the runs presented below we have tried both of these
options. We call the first strategy, of returning a constant
(default) value without executing the tagged code, silent tag-
ging. In the non-silent condition we tag the code and then
evaluate it to produce the value that will be returned to the
caller of the tagging function.

3.2 Return values of tag references prior to
any tagging

If a tag reference, which in the technique described here
will be implemented as a zero-argument function call such
as (tagged.123), occurs before any value has been tagged,
then it is not clear what value should be returned from the
tag reference. In Push it is trivial to treat such a tag refer-
ence as a no-op, both in the sense that no lookup occurs and
in the sense that no values are pushed onto the stacks. In
tree-based genetic programming, however, some value must
be returned from the evaluation of each sub-tree.

The provisional solution that we have adopted in this case
for the runs presented below is to return a constant value,
chosen to be a reasonable default value for the problem being
solved.

3.3 Unbounded recursion
The use of tags can easily lead to unbounded looping or

recursion, for example when code containing a tag reference
is itself tagged. Push interpreters are always designed to
obey limits on the number of steps that can be executed,
and the mechanisms that enforce these limits terminate any
unbounded recursion. The obvious approach in tree-based
genetic programming—which we have taken for the results
presented below—is do do something similar, writing the
code tree evaluation function to obey a step limit.

In Push, however, one can still easily interpret the results
of a program that is terminated abnormally for hitting the
limit; the computations that preceded termination will still
be reflected in the values on the data stacks in the inter-
preter, and those values can be considered to be the results
of the evaluation if it is desirable to do so. No such obvi-
ous option is available when terminating the evaluation of
a tree-based program prior to its natural completion, unless
the tree-based program also does its work by side-effect (as
in the case of the lawnmower problem below).

One approach to this issue, which we used for some of the
runs presented below, is to consider any program that hits
the limit, and therefore fails to produce an interpretable re-
sult, to be invalid. These invalid programs are given penalty
fitness values that make them unlikely to be selected for par-
ticipation in the production of the subsequent generation.

3.4 Passing arguments to tagged modules
As described above, a tagged module in Push may take

any number of arguments easily and without the need to
implement any additional mechanisms. This is not possible
in tree-based genetic programming, in which syntax restric-
tions require function calls to include one subtree for each ar-
gument that a function takes. Although we describe mecha-
nisms that allow for the evolution of tag-based modules that
take arguments later in this paper, the results described be-
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low used only 0-argument functions. This would appear to
be a significant limitation, since many uses of modules in
ordinary (human) programming practice rely on the passing
of arguments to those modules.

We note, however, that something akin to argument pass-
ing is actually possible in the system that we use here, even
though the tagged modules do not explicitly take arguments.
This is because one can use tagging itself to implement some-
thing that we might term “pseudo-arguments,” tagging a
value before calling a tag-based module, and then referring
to the tagged value from within the module.

For example, suppose that we are performing symbolic
regression with three inputs and looking for the solution
x3 + y3 + z3. A one-argument function that cubes a number
would be helpful here. If we are using silent tagging with a
default value of 0 then the following program is a solution
that employs pseudo-tagging:

(+ (tag.10 (* (* tagged.20 tagged.20) tagged.20))

(+ (tag.20 x)

(+ tagged.10

(+ (tag.20 y)

(+ tagged.10

(+ (tag.20 z)

tagged.10))))))

This program essentially uses the code tagged with tag 10
as a function of one argument, and tag 20 as the argument
of the function. The expression in the first line tags the
function definition and the remainder of the expression sets
the argument and then evaluates the function for each of the
desired arguments.

Whether or not such pseudo-arguments would arise natu-
rally during evolution is an open question, but it is a logical
possibility.

3.5 Returning multiple values
As was also described above, a tagged module in Push

may easily return multiple values by modifying multiple data
stacks. Because tree-based genetic programming is based on
function trees that return single values, we see no obvious
way of incorporating this feature into tree-based genetic pro-
gramming systems.

4. RESULTS
We have conducted a large number of runs of tree-based

genetic programming with the simple system for tag-based
modularity described above, with mixed results. We present
here the results for two problems, the 8×8 lawnmower prob-
lem and the Boolean even-4-parity problem, that were shown
by Koza to benefit significantly from the kind of modularity
provided by ADFs [11]. The lawnmower problem (at vari-
ous lawn sizes) was also shown to benefit significantly from
tag-based modules in PushGP [24].

4.1 Lawnmower
The lawnmower problem involves a simulated lawnmower

which must “mow” a grid-based lawn [11]. We use the 8× 8
version of the problem here, in which the grid contains 64
lawn squares arranged in an 8 × 8 grid and in which the
mower starts at location (0, 0). The terminal set contains an
ephemeral random constant generator Rv8 which produces
constant vectors of the form (i, j) where i and j range from 0

Table 1: Parameters for genetic programming runs
on the 8× 8 lawnmower problem.

runs per condition 100
fitness squares unmowed

(out of 64, lower is better)
limits on moves 100
population size 1000

max generations 51
max program depth 17

tournament size 7
mutation percent 5
crossover percent 90

reproduction percent 5
node selection 90% internal nodes,

10% leaves
tree generation ramped half-and-half

ramp depth range 2–6
execution step limit 1000

penalty for exceeding limit 0
terminals Rv8

basic functions left, mow, v8a, frog,
progn

tagging functions tag.n, tagged.n
tag range 0–999

no-op functions noop0, noop1
default value (0, 0)

Table 2: Results of genetic programming in sev-
eral conditions related to tagging on the lawnmower
problem.

Tags Silent No-op Successes MBF Effort

No — No 63 0.45 282,000
No — Yes 53 0.62 357,000
Yes No — 97 0.13 30,000
Yes Yes — 65 0.57 144,000

to 7. The function set contains: left, a zero-argument func-
tion that rotates the lawnmower 90◦ counterclockwise; mow,
a zero-argument function that moves the lawnmower one
space forward (mowing the grass in the destination square
and wrapping around toroidally if necessary); v8a, a two-
argument vector addition (modulo 8) function; frog, a one-
argument function that jumps the lawnmower ahead and to
the side by the amount indicated by its vector argument
(mowing the destination square); and progn, a two function
that allows two subexpressions (in its argument positions) to
be executed in sequence and returns the value of its second
argument. A program is allowed to execute a total of 100
turns (calls to left) or 100 movement operators (calls to
mow or frog) before being aborted; it will be aborted when
it reaches 100 moves or 100 turns, or completes execution of
its code, whichever comes first.

Note that several of the lawnmower functions work by
producing side effects on the state of the lawn—for example
the mow and frog functions have side effects of mowing grid
squares—and that a program that is terminated early for
hitting the execution step limit can nonetheless be evaluated
by examining the state of the lawn. For this reason we
impose no penalty for hitting the execution step limit on
this problem.
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The parameters for our runs on the lawnmower problem
are shown in Table 1 and the results are shown in Table
2. The default value, a vector (0,0), is returned by silent
tagging and by tagged functions when nothing has yet been
tagged. In order to control for changes to the size of the
function set, and effects that this may have on the combi-
natorics of random code generation, we conducted not only
a set of runs that lacked tagging functions but also another
set of runs that replaced the tagging functions with two “no-
op” functions: noop0, which takes no arguments and returns
the default value, and noop1, which takes one argument and
returns it unchanged. We conducted runs with tagging both
in the silent condition, in which tagging operations return
the default value without evaluating the code that they tag,
and the non-silent condition, in which the code that will be
tagged is first evaluated and its value is returned. For each
condition we show the number of runs that were successful
(out of 100), the mean best fitness achieved in each run,
and the computational effort of finding a solution. Compu-
tational effort was computed using Koza’s method [10, pp.
99–103], by first calculating P (M, i), the cumulative proba-
bility of success by generation i with population size M, and
then I(M, i, z), the number of individuals that must be pro-
cessed to produce a solution by generation i with probability
greater than z (here z =99%):

I(M, i, z) = M ∗ (i + 1) ∗
⌈

log(1− z)

log(1− P (M, i))

⌉
The minimum of I(M, i, z) over all values of i is then taken to
be the “computational effort” required to solve the problem.

The results here show that compared to the basic condi-
tion (no tags, no no-ops): no-ops make things worse by all
measures, (non-silent) tags make things dramatically better
by all measures, and silent tags are a mixed bag, with a few
more successes and improved computational effort but worse
mean best fitness.

4.2 Even-4-Parity
In the even-4-parity problem [10] the goal is to determine

whether or not an even number of the four Boolean inputs
have the value true. The inputs are designated by the ter-
minals d0, d1, d2, and d3. The function set includes the four
Boolean functions and, or, nand, and nor. In the context of
tagging operators (which have side-effects with respect to
tag-based retrieval) it is important to note that we do not
“short-circuit” the evaluation of these Boolean functions; for
example, if the first argument of a call to and returns false
we nonetheless evaluate the second argument as well (and
return false).

The parameters for our runs on the even-4-parity prob-
lem are shown in Table 3 and the results are shown in Table
4. As with the runs for the lawnmower problem presented
above, we conducted a set of runs that lacked tagging func-
tions but replaced them with two “no-op” functions: noop0

which takes no arguments and returns the default value and
noop1 which takes one argument and returns it unchanged.
We again conducted runs with tagging both in the silent
and non-silent conditions, and we present the same measures
that were presented for the lawnmower problem above.

Here the results are unequivocally bad for tagging. The
best condition, on all measures, is the simplest one with
no tagging and no no-ops. No-ops make things worse and

Table 3: Parameters for genetic programming runs
on the even-4-parity problem.

runs per condition 100
fitness assignments incorrect

(out of 16, lower is better)
population size 1000

max generations 51
max program depth 17

tournament size 7
mutation percent 5
crossover percent 90

reproduction percent 5
node selection 90% internal nodes,

10% leaves
tree generation ramped half-and-half

ramp depth range 2–6
execution step limit 1000

penalty for exceeding limit 1013

terminals d0, d1, d2, d3
basic functions and, or, nand, nor

tagging functions tag.n, tagged.n
tag range 0–999

no-op functions noop0, noop1
default value false

Table 4: Results of genetic programming in several
conditions related to tagging on the even-4-parity
problem.

Tags Silent No-op Succ MBF Effort

No — No 58 0.56 234,000
No — Yes 36 1.02 495,000
Yes No — 22 1.44 950,000
Yes Yes — 19 1.61 1,044,000

tagging makes them much worse indeed, with silent tagging
being the worst of all.

5. DISCUSSION
It appears clear from the results above that tag-based

modularity of the simplest form, which was suggested in
previous work [24], can indeed help to solve certain prob-
lems (such as the lawnmower problem) but it fails badly on
other problems (such as even-4-parity). There may be many
reasons for these failures, and we do not yet have definitive
explanations or modifications to the technique that will al-
low for better performance. But we can see several factors
that probably hinder performance and we can envision sev-
eral modifications to the technique that may help to amelio-
rate the problems. In this section we present some of these
factors and proposed modifications.

5.1 Passing arguments
It is perhaps not surprising that the technique we tested

here, which allows only for zero-argument tagged modules,
fails badly on the even-4-parity problem because one would
expect that useful functions for this problem would take
Boolean inputs. Indeed, in the configuration within which
Koza showed this problem to benefit from ADFs, each ADF
took three Boolean arguments [11, p. 178]. As we noted
above, it is possible for programs to use “pseudo-arguments”
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even with the very limited system that we have described
here, but a fair amount of code is required to implement
pseudo-arguments and solutions using this strategy may be
difficult to reach through evolutionary search.

It is therefore interesting to consider alternative mech-
anisms that would allow for the passing of arguments to
tagged modules in tree-based genetic programming. One
mechanism that we have developed (but not yet tested suf-
ficiently to present results) uses “substitution-based” argu-
ments as follows: We add some number of argument sym-
bols, such as arg0, arg1, etc., and additional tag retrieval
functions, such as tagged-1-arg, tagged-2-arg, etc., to the
instruction set. The tagged-1-arg function takes one argu-
ment, and the code that appears in the argument position
is substituted for the symbol arg0 in the retrieved code be-
fore it is executed.2 The tagged-2-arg function takes two
arguments, and the code provided as arguments is substi-
tuted for the symbols arg0 and arg1 in the retrieved code.
This idea can be extended for any number of arguments;
while it requires the user to specify the maximum number
of allowed arguments, and hence is not as fully automatic as
the evolution of architectures with tags in Push, the num-
bers of modules of each arity that are actually used will
be determined by evolution. Because it is possible that arg

symbols will sometimes occur in contexts where they are not
removed by substitution, they will sometimes be evaluated;
we envision them returning default values in this case.

Another alternative would be to use tags themselves to
simulate arguments, but to do so in a way that is more par-
simonious and evolvable than the “pseudo-argument” strat-
egy described above. For example we might implement an
ephemeral random function generator that produces one-
argument tag-reference functions that include two tags, one
of which will be used to retrieve the code for execution and
the other of which will be used to tag the code that appears
in the argument position (or its value) before executing the
retrieved code. This scheme suffers from some of the same
complexities as the pseudo-argument strategy for passing
values to tagged modules—for example, similar tag values
would have to appear in the function name and in the tagged
code—but it avoids the need for arg symbols in the method
presented above.

The ideas for passing arguments outlined here are proba-
bly not ideal, but they may be promising first steps toward
a better approach.

5.2 Unbounded recursion
When examining failures of the simple technique presented

here on the even-4-parity problem, we noticed that a rel-
atively large fraction of programs in the initial, random
generations—often in the neighborhood of 10%—contained
unbounded recursion that caused the program to hit the
execution step limit and therefore to receive the severe fit-
ness penalty. The number of offending programs would drop
off sharply in subsequent generations, but the effect of the
penalty would not only be to discourage non-termination but
also to discourage tag usage more generally. Since tag usage

2Alternatively, one could first evaluate the code that appears
in the argument position and then substitute the resulting
value for arg0. This may produce different results in some
circumstances, with the difference being similar to that be-
tween macro and function calls in many programming lan-
guages.

often produces non-termination, and since non-termination
is severely punished, it is difficult to search the space of
tag-using programs. Even worse, to the extent that tags
are “dangerous” because of non-termination-related penal-
ties, the presence of tags may “pollute” the population more
generally, reducing the number of programs that are im-
mune to the penalty and hence slowing the search even for
solutions that do not involve tags.

Aspects of this problem are significantly ameliorated in
our implementation of the lawnmower problem because we
were able to avoid fitness penalties for hitting the execution
step limit there. This may help to explain why tags were so
much more beneficial for lawnmower than for even-4-parity.

Again, the Push-based systems have an advantage with
respect to this issue because Push programs can almost al-
ways deliver valid results even when they are terminated
for hitting the execution step limit—one can simply declare
the results to be whatever is on the stacks at the time of
termination—and the imposition of any penalty is optional.
A Push user may penalize hitting the limit if she has rea-
son to do so, but she may instead allow programs to hit the
limit without penalty if that is more beneficial for evolution-
ary search.

The primary approach to this problem that we have ex-
plored for tree-based tagging involves steps that one can take
to prohibit or eliminate unbounded recursion before an exe-
cution limit is hit. For example, in one approach we un-tag
code upon retrieval, so that embedded code retrievals will
not be able to retrieve the same overall code block while it is
being executed, and then re-tag the code after the retrieved
code has completed execution. When one does this there are
at least two options for the “un-tagging” operation: In one
version of the idea the retrieved code is executed in an envi-
ronment that simply excludes the tag/value pair from which
it was retrieved, which means that embedded references to
the same (or similar) tags will retrieve different code. In
another version of the idea the retrieved code is executed in
an environment in which the tag/value pair is temporarily
replaced by a pairing of the tag with a default value.

Depending on the implementation of these ideas and on
other features of the function set it may not be possible to
completely eliminate unbounded recursion. But a variety of
methods may serve to dramatically decrease the prevalence
of non-termination in programs that use tags, and hence to
decrease the “dangerousness” of tags in tree-based genetic
programming. Some methods will, however, have costs in-
sofar as they may make it harder to find programs that use
recursion in valid and/or terminating ways.3

5.3 Program size and depth
In the simple technique presented here the tagging of a

subtree increases the size and depth of the overall program
tree by one. In many situations the addition of tagging
operations will be initially neutral with respect to fitness,
because no tag-based retrieval functions are present or be-
cause those that are present retrieve code tagged with other
tags, and this will allow tags to proliferate. Presumably this

3Note, however, that valid and/or terminating recursion
may be rare or impossible to achieve in the context of the
limited function sets like those that we have explored here.
In the context of more expressive function sets—for example
function sets that include conditionals—this will be more of
an issue.
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is beneficial in many respects, since once there are many
tagged subtrees it is possible for additional genetic changes
to introduce useful references to these subtrees. But the pro-
liferation of tags will also add to the size and depth of the
trees, and particularly in the case of depth—which is often
limited to a number less than 20—it will lead programs to
hit the depth limit much earlier. Many genetic programming
systems perform poorly when large numbers of programs
reach the depth limit, for example because many mutations
are discarded for exceeding the limit.

The Push-based approach also has advantages with re-
spect to this issue. Tagging in Push increases the size of
a program but not its depth, and the presence of tags is
unlikely to be a major factor in the hitting of limits. But
with the simple version of the tree-based tagging technique
that we have explored here the depth limit may be reached
quickly, and indeed we have observed this in several runs
that we have examined.

We have considered two approaches to this problem, but
neither yet appears to be fully satisfactory. In one approach
we count tagging functions differently from other functions
when determining whether a tree exceeds the depth limit,
and we set independent limits for total depth and for depth
of nested tagging. In the other approach we modify the
syntax of program trees so that tagging occurs within other
function calls and therefore does not increase the overall
depth of the tree. There is some complexity involved in the
implementation of both of these approaches and the effects
that they will have on program size, program depth, and
problem-solving performance are not yet clear.

6. CONCLUSIONS AND FUTURE WORK
Tag-based modularity is an appealing concept because it

can potentially allow programs with complex modular archi-
tectures to evolve without requiring users to specify those
architectures in advance and without requiring much in the
way of additional complexity in the genetic programming
system. Previous work has shown that tag-based modular-
ity can have significant utility in some situations, but the
previous demonstrations have all been in the PushGP sys-
tem which is unconventional in several respects. Here we
explored a simple idea for incorporating tag-based modular-
ity into tree-based genetic programming systems, following
a suggestion published in the prior work [24].

Our results show that the simplest form of tag-based mod-
ularity in tree-based genetic programming does indeed have
some utility, but while it is quite beneficial in some circum-
stances it is detrimental in others. We have identified sev-
eral possible reasons for these detrimental effects, including
the difficulty of passing arguments, problems related to un-
bounded recursion, and problems stemming from the effects
of tagging on program size and depth. We described several
approaches to the solution of these problems, although we
have not yet tested them sufficiently to draw conclusions.

We believe that the potential promise of the technique
justifies further work; we plan to conduct such work and we
would encourage others to do so as well. The code that we
used for the experiments presented here is freely available
for others to use for their own experiments.4

Aside from the investigation of the hypotheses and al-
ternative approaches proposed above, several other lines of

4http://hampshire.edu/lspector/tags-gecco-2012

future work seem to us to be potentially worthwhile. First,
it should be informative to conduct experiments like those
reported here on a much wider range of problems. This
should provide data about where and when the problems
do and don’t arise, and hence it should also provide clues
about which approaches to solving the problems are likely
to be most fruitful. It would also be interesting to exam-
ine the tag usage that occurs in evolved programs in detail,
to see what forms of tag usage are promoted by the sim-
ple mechanisms that we have already provided and what
forms of tag usage may be helpful but are not yet acces-
sible. In addition, it would be interesting to examine the
benefits of tag-based modularity in tree-based programs rel-
ative to other modularity mechanisms for similar program
representations, such as ADFs [10, 11]. Since ADFs require
more pre-specification and provide less architectural flexi-
bility than tag-based modules, this would not be an “apples
to apples” comparison, but it would nonetheless be informa-
tive to see how the different modularity mechanisms fare on
problems of increasing complexity.

Finally, we note that the difficulties that we have encoun-
tered in developing an approach to tag-based modularity in
tree-based genetic programming do nothing to diminish the
utility of the technique in PushGP, or indeed in any other
form of genetic programming. The core idea of tagging and
of tag-based (closest-match) retrieval of modules should be
applicable in many other forms of genetic programming—for
example, in machine code genetic programming [13], Carte-
sian genetic programming [4], and grammatical evolution
[14]—and the problems that we have encountered here may
not occur, or may not be as severe, in those contexts. It
might turn out that the representational constraints of tra-
ditional, tree-based genetic programming are a poor match
to the requirements for tag-based modularity. Nonetheless,
tag-based modularity may be important for the future of
genetic programming because of its utility in the context of
other program representations.
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