Reducing Bloat and Promoting Diversity using
Multi-Objective Methods

Edwin D. de Jong'?

Richard A. Watson?

Jordan B. Pollack?

{edwin, richardw, pollack}@cs.brandeis.edu
Vrije Universiteit Brussel, AI Lab, Pleinlaan 2, B-1050 Brussels, Belgium
2Brandeis University, DEMO Lab, Computer Science dept., Waltham, MA 02454, USA

Category: Genetic Programming
Abstract

Two important problems in genetic program-
ming (GP) are its tendency to find unnec-
essarily large trees (bloat), and the general
evolutionary algorithms problem that diver-
sity in the population can be lost prema-
turely. The prevention of these problems
is frequently an implicit goal of basic GP.
We explore the potential of techniques from
multi-objective optimization to aid GP by
adding explicit objectives to avoid bloat and
promote diversity. The even 3, 4, and 5-
parity problems were solved efficiently com-
pared to basic GP results from the litera-
ture. Even though only non-dominated in-
dividuals were selected and populations thus
remained extremely small, appropriate diver-
sity was maintained. The size of individuals
visited during search consistently remained
small, and solutions of what we believe to be
the minimum size were found for the 3, 4,
and 5-parity problems.

Keywords: genetic programming, code growth,
bloat, introns, diversity maintenance, evolutionary
multi-objective optimization, Pareto optimality

1 INTRODUCTION

A well-known problem in genetic programming (GP),
is the tendency to find larger and larger programs over
time (Tackett, 1993; Blickle & Thiele, 1994; Nordin &
Banzhaf, 1995; McPhee & Miller, 1995; Soule & Fos-
ter, 1999), called bloat or code growth. This is harm-
ful since it results in larger solutions than necessary.
Moreover, it increasingly slows down the rate at which
new individuals can be evaluated. Thus, keeping the
size of trees that are visited small is generally an im-
plicit objective of GP.

Another important issue in GP and in other methods
of evolutionary computation is that of how diversity
of the population can be achieved and maintained. A
population that is spread out over promising parts of
the search space has more chance of finding a solution
than one that is concentrated on a single fitness peak.
Since members of a diverse population solve parts of
the problem in different ways, it may also be more
likely to discover partial solutions that can be utilized
through crossover. Diversity is not an objective in the
conventional sense; it applies to the populations visited
during the search, not to final solutions. A less obvious
idea then is to view the contribution of individuals to
population diversity as an objective.

Multi-objective techniques are specifically designed for
problems in which knowledge about multiple objec-
tives is available, see e.g. Fonseca and Fleming (1995)
for an overview. The main idea of this paper is to
use multi-objective techniques to add the objectives of
size and diversity in addition to the usual objective of
a problem-specific fitness measure. A multi-objective
approach to bloat appears promising and has been
used before (Langdon, 1996; Rodriguez-Vazquez, Fon-
seca, & Fleming, 1997), but has not become standard
practice. The reason may be that basic multi-objective
methods, when used with small tree size as an objec-
tive, can result in premature convergence to small in-
dividuals (Langdon & Nordin, 2000; Ekart, 2001). We
therefore investigate the use of a size objective in com-
bination with explicit diversity maintenance.

The remaining sections discuss the n-parity problem
(2), bloat (3), multi-objective methods (4), diversity
maintenance(5), ideas behind the approach, called FO-
CUS, (6), algorithmic details (7), results (8), and con-
clusions (9).

2 THE N-PARITY PROBLEM

The test problems that will be used in this paper are
even n-parity problems, with n ranging from 3 to 5.
A correct solution to this problem takes a binary se-
quence of length n as input and returns true (one) if

Figure 1: A correct solution to the 2-parity problem

the number of ones in the sequence is even, and false
(zero) if it is odd. It is named even to avoid confusion
with the related odd parity problem, which gives the
inverse answer. Trees may use the following boolean
operators as internal nodes: AND, OR, NAND, and
NOR. Each leaf specifies an element of the sequence.
The fitness is the fraction of all possible length n bi-
nary sequences for which the program returns the cor-
rect answer. Figure 1 shows an example.

The n-parity problem has been selected because it is a
difficult problem that has been used by a number of re-
searchers. With increasing order, the problem quickly
becomes more difficult. One way to understand its
hardness is that for any setting of the bits, flipping
any bit inverts the outcome of the parity function.
Equivalently, its Karnaugh map (Zissos, 1972) equals
a checkerboard function, and thus has no adjacencies.

2.1 SIZE OF THE SMALLEST
SOLUTIONS TO N-PARITY

We believe that the correct solutions to n-parity con-
structed as follows are of minimal size, but are not able
to prove this. The principle is to recursively divide the
bit sequence in half and, take the parity of each halve,
and feed these two into a parity function. For subse-
quences of size one, i.e. single bits, the bit itself is used
instead of its parity. When this occurs for one of the
two arguments, the outcome would be inverted, and
thus the odd 2-parity function is used to obtain the
even 2-parity of the bits.

Let S be a binary sequence of length [S| = n > 2.
S is divided in half yielding two subsequences L and
R with, for even n, length 3 or, for odd n, lengths
2=1 and %L, Then the following recursively defined
function P(S) gives a correct expression for the even-
parity of S for |S| > 2 in terms of the above operators:

S if Sl=1
P(S) = { ODD(P(L), P(R)) if ISI >1Ag(L,R)
EVEN(P(L),P(R)) otherwise

where
ODD(A, B) = NOR(AND(A, B), NOR(A, B)),
EVEN(A, B) = OR(AND(A, B), NOR(A, B)), and

TRUE if

Al=1)XOR (|B| =1
g(A’B)Z{FALSE else 4= (5=

Table 1: Length of the shortest solution to n-parity
using the operators AND, OR, NAND, and NOR.

n 1123 |4 |5 |6 |7
Length | 3 | 7| 19| 31| 55 | 79 | 103

The length |P(S)| of the expression P(S) satisfies:

1 for

S| =1
{ 3+ 2|P(L)| +2|P(R)| for

|P(S)|= |S|>1

For n = 2¢ i > 0, this expression can be shown to
equal 2n? — 1. Table 1 gives the lengths of the ex-
pressions for the first seven even-n-parity problems.
For |S| = 1, the shortest expression is NOR(S, S); for
|S| > 1, the length is given by the above expression.
The rapid growth with increasing order stems from the
repeated doubling of the required inputs.

3 THE PROBLEM OF BLOAT

A well-known problem, known as bloat or code growth,
is that the trees considered during a GP run grow
in size and become larger than is necessary to rep-
resent good solutions. This is undesirable because it
slows down the search by increasing evaluation and
manipulation time and, if the growth consists largely
of non-functional code, by decreasing the probability
that crossover or mutation will change the operational
part of the tree. Also, compact trees have been linked
to improved generalization (Rosca, 1996).

Several causes of bloat have been suggested. First,
under certain restrictions (Soule, 1998), crossover fa-
vors smaller than average subtrees in removal but
not in replacement. Second, larger trees are more
likely to produce fit (and large) offspring because
non-functional code can play a protective role against
crossover (Nordin & Banzhaf, 1995) and, if the prob-
ability of mutating a node decreases with increasing
tree size, against mutation. Third, the search space
contains more large than small individuals (Langdon
& Poli, 1998).

Nordin and Banzhaf (1995) observed that the length
of the effective part of programs decreases over time.
However, the total length of the programs in the ex-
periments also increased rapidly, and hence it may be
concluded that in those experiments bloat was mainly
due to growth of ineffective code (introns).

Finally, it is conceivable that in some circumstances
non-functional code may be useful. It has been sug-
gested that introns may be useful for retaining code
that is not used in the current individual but is a
helpful building block that may be used later (Nordin,
Francone, & Banzhaf, 1996).

Table 2: Properties of the basic GP method used.

Problem 3-Parity
Fitness Fraction of correct answers
Operators AND, OR, NAND, and NOR

500,000 evaluations or solution
Initial tree size Uniform [1..20] internal nodes
Cycle generational

Population Size 1000

Parent selection Boltzmann with T = 0.1

Stop criterion

Replacement Complete

Uniqueness check | Individuals occur at most once
P(crossover) 0.9

P(mutation) 0.1

Mutate node with P = 1

n

Mutation method

700 r r

600 Fraction of runs that yielded solution -----
Size of spallest correct tree ——-—

- 0.75

[
N
0
Q
g
b Ho05
g
g
Z
- 0.25
oty oo
0 20000 40000 60000 80000 100000

Number of fitness evaluations

Figure 2: Average tree sizes of ten different runs (solid
lines) using basic GP on the 3-parity program.

3.1 OBSERVATION OF BLOAT USING
BASIC GP

To confirm that bloat does indeed occur in the test
problem of n-parity using basic GP, thirty runs where
performed for the 3-parity problem. The parameters
of the run are shown in Table 2. A run ends when
a correct solution has been found. Figure 2 shows
that average tree sizes increase rapidly in each run. If
a solution is not found at an early point in the run,
bloating rapidly increases the sizes of the trees in the
population, thus increasingly slowing down the search.
A single run of 111,054 evaluations already took more
than 15 hours on a current PC running Linux due to
the increasing amount of processing required per tree
as a result of bloat. The population of size-unlimited
trees that occurred in the single 4-parity run that
was tried (with trees containing up to 6,000 nodes)
filled virtually the entire swap space and caused per-
formance to degrade to impractical levels. Clearly, the
problem of bloat must be addressed in order to solve
these and higher order versions of the problem in an
efficient manner.

700 T T

T T
Average treesize_-—————-
600 |- Fraction of runs that yielded solution -----
Minimum size of correct tree —-—-—
500 |- 707

/

400

Fraction of successful runs

300 -/
I
I
200 | ; doss
]
100 f’k
0 -\ —-—94-————"%t - - - - - - - 0
0 20000 40000 60000 80000 100000

Number of fitness evaluations

Figure 3: Average tree sizes and fraction of successful
runs in the 3-parity problem using basic GP with a tree
size limit of 200. Tree sizes are successfully limited, of
course, but the approach is not ideal (see text).

3.2 USING A FIXED TREE SIZE LIMIT

Probably the most common way to avoid bloat is to
simply limit the allowed tree size or depth (Langdon &
Poli, 1998; Koza, 1992), although the latter has been
found to lead to loss of diversity near the root node
when used with crossover (Gathercole & Ross, 1996).
Figure 3 shows the effect of using a limit of 200 on 3-
parity. This limit is well above the minimum size of a
correct solution, but not too high either since several
larger solutions were found in the unrestricted run.
The average tree size is around 140 nodes.

On the 4-parity problem (with a tree size limit of 200),
the average tree size varied around 150. However,
whereas on 3-parity 90% of the runs found a solution
within 100,000 evaluations, on 4-parity only 33% of
the runs found a solution within 500,000 evaluations,
testifying to the increased difficulty of this order of
the parity problem. For 5-parity, basic GP found no
solutions within 1,000,000 evaluations for any of the
30 runs. Thus, our version of GP with fixed tree size
limit does not scale up well. Furthermore, a funda-
mental problem with this method of preventing bloat
is that the maximum tree size has to be selected before
the search, when it is often unknown.

3.3 WEIGHTED SUM OF FITNESS AND
SIZE

Instead of choosing a fixed tree size limit in advance
one would rather like to have the algorithm search for
trees that can be as large as they need to be, but not
much larger. A popular approach that goes some way
towards this goal is to include a component in the fit-
ness that rewards small trees or programs. This is
mostly done by adding a component to the fitness,
thus making fitness a linear combination of a perfor-
mance measure and a parsimony measure (Koza, 1992;
Soule, Foster, & Dickinson, 1996). However, this ap-
proach is not without its own problems (Soule & Fos-

T ; . Non-dominated
| individuals
g S b Highest isocline of weighted
@ o L sum that crosses an individual
g ___ Direction in which weighted
= ° : sum increases
o . .
Objective 2

Figure 4: Schematic rendition of a concave tradeoff
surface. This occurs when better performance in one
objective means worse performance in the other, vice
versa. The lines mark the maximum fitness individu-
als for three example weightings (see vectors) using a
linear weighting of the objectives. No linear weight-
ing exists that finds the in-between individuals, with
reasonable performance in both objectives.

ter, 1999). First, the weight of the parsimony measure
must be determined beforehand, and so a choice con-
cerning the tradeoff between size and performance is
already made before the search. Furthermore, if the
tradeoff surface between the two fitness components
is concave! (see Fig. 4), a linear weighting of the two
components favors individuals that do well in one of
the objectives, but excludes individuals that perform
reasonably in both respects (Fleming & Pashkevich,
1985).

Soule and Foster (1999) have investigated why a linear
weighting of fitness and size has yielded mixed results.
It was found that a weight value that adequately bal-
ances fitness and size is difficult to find. However, if
the required balance is different for different regions
in objective space, then adequate parsimony pressure
cannot be specified using a single weight. If this is
the case, then methods should be used that do not at-
tempt to find such a single balance. This idea forms
the basis of multi-objective optimization.

4 MULTI-OBJECTIVE METHODS

After several early papers describing the idea of opti-
mizing for multiple objectives in evolutionary compu-
tation (Schaffer, 1985; Goldberg, 1989), the approach
has recently received increasing attention (Fonseca &
Fleming, 1995; Van Veldhuizen, 1999). The basic idea
is to search for multiple solutions, each of which satisfy
the different objectives to different degrees. Thus, the
selection of the final solution with a particular com-
bination of objective values is postponed until a time
when it is known what combinations exist.

A key concept in multi-objective optimization is that
of dominance. Let individual x4 have values A; for the
n objectives, and individual zg have objective values

Since fitness is to be mazimized, the tradeoff curve
shown is concave.

B;. Then A dominates B if

VZE[ln]A,ZBz/\EllAz>BZ

Multi-objective optimization methods typically strive
for Pareto optimal solutions, i.e. individuals that are
not dominated by any other individuals.

5 DIVERSITY MAINTENANCE

A key difference between classic search methods and
evolutionary approaches is that in the latter a popu-
lation of individuals is maintained. The idea behind
this is that by maintaining individuals in several re-
gions of the search space that look promising (diver-
sity maintenance), there is a higher chance of finding
useful material from which to construct solutions.

In order to maintain the existing diversity of a pop-
ulation, evolutionary methods typically keep some or
many of the individuals that happen to have been gen-
erated and have relatively high fitness, but lower than
that found so far. In the same way, evolutionary multi-
objective methods usually keep some dominated indi-
viduals in addition to the non-dominated individuals
(Fonseca & Fleming, 1993). However, this appears to
be a somewhat arbitrary way of maintaining diversity.
In the following section, we present a more directed
method. The relation to other diversity maintenance
methods is discussed.

6 THE FOCUS METHOD

We propose to do diversity maintenance by using a
basic multi-objective algorithm and including an ob-
jective that actively promotes diversity. To the best
of our knowledge, this idea has not been used in other
work, including multi-objective research. If it works
well, the need for keeping arbitrary dominated indi-
viduals may be avoided. To test this, we use the di-
versity objective in combination with a multi-objective
method that only keeps non-dominated individuals, as
reported in section 8.

The approach strongly directs the attention of the
search towards the explicitly specified objectives. We
therefore name this method FOCUS, which stands for
Find Only and Complete Undominated Sets, reflecting
the fact that populations only contain non-dominated
individuals, and contain all such individuals encoun-
tered so far. Focusing on non-dominated individuals
combines naturally with the idea that the objectives
are responsible for exploration, and this combination
defines the FOCUS method.

The concept of diversity applies to populations, mean-
ing that they are dispersed. To translate this aim into
an objective for individuals, a metric has to be defined
that, when optimized by individuals, leads to diverse
populations. The metric used here is that of average

squared distance to the other members of the popu-
lation. When this measure is maximized, individuals
are driven away from each other.

Interestingly, the average distance metric strongly de-
pends on the current population. If the population
were centered around a single central peak in the fit-
ness landscape, then individuals that moved away from
that peak could survive by satisfying the diversity ob-
jective better than the individuals around the fitness
peak. It might be expected that this would cause
large parts of the population to occupy regions that
are merely far away from other individuals but are not
relevant to the problem. However, if there are any
differences in fitness in the newly explored region of
the search space, then the fitter individuals will come
to replace individuals that merely performed well on
diversity. When more individuals are created in the
same region, the potential for scoring highly on diver-
sity for those individuals diminishes, and other areas
will be explored. The dynamics thus created are a new
way to maintain diversity.

Other techniques that aim to promote diversity in a di-
rected way exist, and include fitness sharing (Goldberg
& Richardson, 1987; Deb & Goldberg, 1989), deter-
ministic crowding (Mahfoud, 1995), and fitness derat-
ing (Beasley, Bull, & Martin, 1993). A distinguishing
feature of the method proposed here is that in choos-
ing the diversity objective, problem-based criteria can
be used to determine which individuals should be kept
for exploration purposes.

7 ALGORITHM DETAILS

The algorithm selects individuals if and only if they are
not dominated by other individuals in the population.
The population is initialized with 300 randomly cre-
ated individuals of 1 to 20 internal nodes. A cycle
proceeds as follows. A chosen number n of new indi-
viduals (300) is generated based on the current popu-
lation using crossover (90%) and mutation (10%). If
the individual already exists in the population, it is
mutated. If the result also exists, it is discarded. Oth-
erwise it is added to the population. All individuals
are then evaluated if necessary. After evaluation, all
population members are checked against other popu-
lation members, and removed if dominated by any of
them.

A slightly stricter criterion than Pareto’s is used: A
dominates B if Vi € [1..n] : 4; > B;. Of multiple indi-
viduals occupying the same point on the tradeoff sur-
face, precisely one will remain, since the removal cri-
terion is applied sequentially. This criterion was used
because the Pareto criterion caused a proliferation of
individuals occupying the same point on the trade-off
surface when no diversity objective was used?.

’In later experiments including the diversity objec-

700 | | 11 a1
__-----"Average treesize
600 — Fractior of runs that yielded solution -----
» ;7 Minimum size of correct tree —-—-~
c / _
2s0- [0.75
2 A
2 s
@ 400 - /
g / - 05
2] 1
5 300 — |
c I
S !
g 200 - 025
w !
100 =+
om’«i:uu.uuA preAodoth == g
0 20000 40000 60000 80000 100000

Number of fitness evaluations

Figure 5: Average tree size and fraction of successful
runs for the [fitness, size, diversity] objective vector on
the 3-parity problem. The trees are much smaller than
for basic GP, and solutions are found faster.

The following distance measure is used in the diversity
objective. The distance between two corresponding
nodes is zero if they are identical and one if they are
not. The distance between two trees is the sum of the
distances of the corresponding nodes, i.e. nodes that
overlap when the two trees are overlaid, starting from
the root. The distance between two trees is normalized
by dividing by the size of the smaller tree of the two.

8 EXPERIMENTAL RESULTS

In the following experiments we use fitness, size, and
diversity as objectives. The implementation of the ob-
jectives is as follows. Fitness is the fraction of all 2™
input combinations handled correctly. For size, we use
1 over the number of nodes in the tree as the objective
value. The diversity objective is the average squared
distance to the other population members.

8.1 USING FITNESS, SIZE, AND
DIVERSITY AS OBJECTIVES

Fig. 5 shows the graph of Fig. 3 for the method of
using fitness, size, and diversity as objectives. The av-
erage tree size remains extremely small. In addition,
a glance at the graphs indicates that correct solutions
are found more quickly. To determine whether this
is indeed the case, we compute the computational ef-
fort, i.e. the expected number of evaluations required
to yield a correct solution with a 99% probability, as
described in detail by Koza (1994).

The impression that correct solutions to 3-parity are
found more quickly for the multi-objective approach
(see Figure 6) is confirmed by considering the com-
putational effort E; whereas GP with the tree size
limit requires 72,044 evaluations, the multi-objective
approach requires 42,965 evaluations. For the 4-
parity problem, the difference is larger; basic GP needs

tive, this proliferation was not observed, and the standard
Pareto criterion also worked satisfactorily.

600000

500000

400000

300000

P(correct solution)

200000 [+ |
k
g

100000 H

Expected Required evaluations

. GP:E=72,044 sl

/
|

SIS s

MO: E = 42,965 1

0 50000
Evaluations

0

0
100000

Figure 6: Probability of finding a solution and com-
putational effort for 3-parity using basic GP and the
multi-objective method.

1.4e+07 T T T T 1
E P for MO method

P for GP -----

| for MO method ------

I for GP oo

1.2e+07

1le+07

8e+06

6e+06

1
o
(%))
P(correct solution)

4e+06

Expected Required evaluations

2e+06

_MO: E = 238,856

0 0
0 100000 200000 300000 400000 500000
Evaluations

Figure 7: Probability of finding a solution and compu-
tational effort for 4-parity for basic GP and the multi-
objective method. The performance of the multi-
objective method is considerably superior.

5,410,550 evaluations, whereas the multi-objective ap-
proach requires only 238,856. This is a dramatic im-
provement, and demonstrates that our method can be
very effective.

Finally, experiments have been performed using the
even more difficult 5-parity problem. For this prob-
lem, basic GP did not find any correct solutions within
a million evaluations. The multi-objective method did
find solutions, and did so reasonably efficiently, requir-
ing a computational effort of 1,140,000 evaluations.
Table 3 summarizes the results of the experiments.
Considering the average size of correct solutions on
3-parity, the multi-objective method outperforms all
methods that have been compared, as the first solution
it finds has 30.4 nodes on average. What’s more, the
multi-objective method also requires a smaller num-
ber of evaluations to do so than the other methods.
Finally, perhaps most surprisingly, it finds correct so-
lutions using extremely small populations, typically
containing less than 10 individuals. For example, the
average population size over the whole experiment for
3-parity was 6.4, and 8.5 at the end of the experiment,

Table 3: Results of the experiments (GP and Multi-
Objective rows). For comparison, results of Koza’s
(1994) set of experiments (population size 16,000) and
the best results with other configurations (population
size 4,000) found there. E: computational effort, S:
average tree size of first solution, Pop: average popu-
lation size.

3-parity E S Pop
GP 72,044 93.67 | 1000
Multi-objective | 42,965 30.4 6.4
Koza GP 96,000 44.6 16,000
Koza GP-ADF | 64,000 48.2 16,000
4-parity E S Pop
GP 5,410,550 | 154 1000
Multi-objective | 238,856 68.5 15.8
Koza GP 384,000 112.6 | 16,000
Koza GP-ADF | 176,000 60.1 16,000
b-parity E S Pop
GP oo' n.a. n.a
Multi-objective | 1,140,000 | 218.7 | 49.7
Koza GP 6,528,000 | 299.9 | 16,000
Koza GP 1,632,000 | 299.9 | 4,000
Koza GP-ADF | 464,000 156.8 | 16,000
Koza GP-ADF | 272,000 99.5 | 4,000

'No solutions were found for 5-parity using basic GP.

and the highest population size encountered in all 30
runs was 18. This suggests that the diversity main-
tenance achieved by using this greedy multi-objective
method in combination with an explicit diversity ob-
jective is effective, since even extremely small popula-
tions did not result in premature convergence.
Considering 4 and 5-parity, the GP extended with the
size and diversity objectives outperforms both basic
GP methods used by Koza (1994) and the basic GP
method tested here, both in terms of computational
effort and tree size. The Automatically Defined Func-
tion (ADF) experiments performed by Koza for these
and larger problem sizes perform better. These prob-
ably benefit from the inductive bias of ADFs, which
favors a modular structure. Therefore, a natural di-
rection for future experiments is to also extend ADF's
with size and diversity objectives.

For comparison, we also implemented an evolutionary
multi-objective technique that does keep some domi-
nated individuals. It used the number of individuals by
which an individual is dominated as a rank, similar to
the method described by Fonseca and Fleming (1993).
The results were similar in terms of evaluations, but
the method keeping strictly non-dominated individuals
worked faster, probably due to the calculation of the
distance measure. Since this is quadratic in the pop-
ulation size, the small populations of multi-objective
save much time (about a factor 7 for 5-parity), which
made it preferable.

As a control experiment, we also investigated whether
the diversity objective is really required by using
only fitness and size as objectives using the algorithm
that was described. The individuals found are small
(around 10 nodes), but the fitness of the individuals
found was well below basic GP, and hence the diver-
sity objective was indeed performing a useful function
in the experiments.

8.2 OBTAINING STILL SMALLER
SOLUTIONS

Finally, we investigate whether the algorithm is able
to find smaller solutions, after finding the first. Af-
ter the first correct solution is found, we monitor the
smallest correct solution. Although the first solution
size of 30 was already low compared to other methods,
the algorithm rapidly finds smaller correct solutions.
The average size drops to 22 within 4,000 additional
evaluations, and converges to around 20. The smallest
tree (found in 12 out of 30 runs) was 19, i.e. equalling
the presumed minimum size. On 4-parity, solutions
dropped in size from the initial 68.5 to 50 in about
10,000 evaluations, and to 41 on average when runs
were continued longer (85,000 evaluations). In 12 of
the 30 runs, minimum size solutions (31 nodes) were
found. Using the same method, a minimum size solu-
tion to 5-parity (55 nodes) was also found.

The quick convergence to smaller tree sizes shows that
at least for the problem at hand, the method is effec-
tive at finding small solutions when it is continued run-
ning after the first correct solutions have been found,
in line with the seeding experiments by Langdon and
Nordin (2000).

9 CONCLUSIONS

The paper has discussed using multi-objective meth-
ods as a general approach to avoiding bloat in GP
and to promoting diversity, which is relevant to evo-
lutionary algorithms in general. Since both of these
issues are often implicit goals, a straightforward idea
is to make them explicit by adding corresponding ob-
jectives. In the experiments that are reported, a size
objective rewards smaller trees, and a diversity objec-
tive rewards trees that are different from other individ-
uals in the population, as calculated using a distance
measure.

Strongly positive results are reported regarding both
size control and diversity maintenance. The method
is successful in keeping the trees that are visited small
without requiring a size limit or a relative weighting of
fitness and size. It impressively outperforms basic GP
on the 3, 4, and 5-parity problem both with respect
to computational effort and tree size. Furthermore,
correct solutions of what we believe to be the minimum
size have been found for all problem sizes examined,

i.e. the even 3, 4, and 5-parity problems.

The effectiveness of the new way of promoting diver-
sity proposed here can be assessed from the follow-
ing, which concerns the even 3, 4, and 5-parity prob-
lems. The multi-objective algorithm that was used
only maintains individuals that are not dominated by
other individuals found so far, and maintains all such
individuals (except those with identical objective vec-
tors). Thus, only non-dominated individuals are se-
lected after each generation, and populations (hence)
remained extremely small (6, 16, and 50 on average,
respectively). In defiance of this uncommon degree of
greediness or elitism, sufficient diversity was achieved
to solve these problems efficiently in comparison with
basic GP method results both as obtained here and as
found in the literature. Control experiments in which
the diversity objective was removed (leaving the fit-
ness and size objectives) failed to maintain sufficient
diversity, as would be expected.

The approach that was pursued here is to make de-
sired characteristics of search into explicit objectives
using multi-objective methods. This method is simple
and straightforward and performed well on the prob-
lem sizes reported, in that it improved the performance
of basic GP on 3 and 4-parity. It solved 5-parity rea-
sonably efficiently, even though basic GP found no so-
lutions on 5-parity. For problem sizes of 6 and larger,
basic GP is no longer feasible, and more sophisticated
methods must be invoked that make use of modular-
ity, such as Koza’s Automatically Defined Functions
(1994) or Angeline’s GLiB (1992). We expect that the
multi-objective approach with size and diversity as ob-
jectives that was followed here could also be of value
when used in combination with these or other existing
methods in evolutionary computation.

Acknowledgements

The authors would like to thank Michiel de Jong,
Pablo Funes, Hod Lipson, and Alfonso Renart for use-
ful comments and suggestions concerning this work.
Edwin de Jong gratefully acknowledges a Fulbright
grant.

References

Angeline, P. J., & Pollack, J. B. (1992). The evolutionary
induction of subroutines. In Proceedings of the fourteenth
annual conference of the cognitive science society (p. 236-
241). Bloomington, Indiana, USA: Lawrence Erlbaum.

Beasley, D., Bull, D. R., & Martin, R. R. (1993). A sequen-
tial niche technique for multimodal function optimization.
Evolutionary Computation, 1(2), 101-125.

Blickle, T., & Thiele, L. (1994). Genetic programming and
redundancy. In J. Hopf (Ed.), Genetic algorithms within
the framework of evolutionary computation (workshop at
ki-94, saarbricken) (pp. 33-38). Im Stadtwald, Building

44, D-66123 Saarbriicken, Germany: Max-Planck-Institut
fiir Informatik (MPI-I-94-241).

Deb, K., & Goldberg, D. E. (1989). An investigation of
niche and species formation in genetic function optimiza-
tion. In J. D. Schaffer (Ed.), Proceedings of the 8rd in-
ternational conference on genetic algorithms (pp. 42-50).
George Mason University: Morgan Kaufmann.

Ekart, A. (2001). Selection based on the Pareto nondomi-
nation criterion for controlling code growth in genetic pro-
gramming. Genetic Programming and Evolvable Machines,
2, 61-73.

Fleming, P. J., & Pashkevich, A. P. (1985). Computer-
aided control system design using a multiobjective opti-
mization approach. In Proceedings of the iee international
conference — control ’85 (pp. 174-179). Cambridge, UK.

Fonseca, C. M., & Fleming, P. J. (1993). Genetic Algo-
rithms for Multiobjective Optimization: Formulation, Dis-
cussion and Generalization. In S. Forrest (Ed.), Proceedings
of the fifth international conference on genetic algorithms
(ICGA’98) (pp. 416-423). San Mateo, California: Morgan
Kauffman Publishers.

Fonseca, C. M., & Fleming, P. J. (1995). An Overview of
Evolutionary Algorithms in Multiobjective Optimization.
Evolutionary Computation, 3(1), 1-16.

Gathercole, C., & Ross, P. (1996). An adverse interaction
between crossover and restricted tree depth in genetic pro-
gramming. In J. R. Koza, D. E. Goldberg, D. B. Fogel, &
R. L. Riolo (Eds.), Genetic programming 1996: Proceed-
ings of the first annual conference (pp. 291-296). Stanford
University, CA, USA: MIT Press.

Goldberg, D. E. (1989). Genetic algorithms in search,
optimization, and machine learning. Addison-Wesley.

Goldberg, D. E., & Richardson, J. (1987). Genetic algo-
rithms with sharing for multimodal function optimization.
In J. J. Grefenstette (Ed.), Genetic algorithms and their
applications : Proc. of the second Int. Conf. on Genetic
Algorithms (pp. 41-49). Hillsdale, NJ: Lawrence Erlbaum
Assoc.

Koza, J. R. (1992).
MA: MIT Press.

Genetic programming. Cambridge,

Koza, J. R. (1994). Genetic programming II: Automatic
discovery of reusable programs. Cambridge, MA: MIT
Press.

Langdon, W. B. (1996). Advances in genetic programming
2. In P. J. Angeline & K. Kinnear (Eds.), (p. 395-414).
Cambridge, MA: MIT Press. (Chapter 20)

Langdon, W. B., & Nordin, J. P. (2000). Seeding GP pop-
ulations. In R. Poli, W. Banzhaf, W. B. Langdon, J. F.
Miller, P. Nordin, & T. C. Fogarty (Eds.), Genetic pro-
gramming, proceedings of eurogp’2000 (Vol. 1802, pp. 304—
315). Edinburgh: Springer-Verlag.

Langdon, W. B., & Poli, R. (1998). Fitness causes bloat:
Mutation. In W. Banzhaf, R. Poli, M. Schoenauer, & T. C.
Fogarty (Eds.), Proceedings of the first european workshop
on genetic programming (Vol. 1391, pp. 37-48). Paris:
Springer-Verlag.

Mahfoud, S. W. (1995). Niching methods for genetic al-
gorithms. Unpublished doctoral dissertation, University of
Illinois at Urbana-Champaign, Urbana, IL, USA. (IlliGAL
Report 95001)

McPhee, N. F., & Miller, J. D. (1995). Accurate repli-
cation in genetic programming. In L. Eshelman (Ed.),
Genetic algorithms: Proceedings of the sizth international
conference (icga95) (pp. 303-309). Pittsburgh, PA, USA:
Morgan Kaufmann.

Nordin, P., & Banzhaf, W. (1995). Complexity compres-
sion and evolution. In L. Eshelman (Ed.), Genetic algo-
rithms: Proceedings of the sizth international conference
(icga95) (pp. 310-317). Pittsburgh, PA, USA: Morgan
Kaufmann.

Nordin, P., Francone, F., & Banzhaf, W. (1996). Explicitly
defined introns and destructive crossover in genetic pro-
gramming. In P. J. Angeline & K. E. Kinnear, Jr. (Eds.),
Advances in genetic programming 2 (pp. 111-134). Cam-
bridge, MA, USA: MIT Press.

Rodriguez-Vazquez, K., Fonseca, C. M., & Fleming, P. J.
(1997). Multiobjective genetic programming: A nonlinear
system identification application. In J. R. Koza (Ed.), Late
breaking papers at the 1997 genetic programming confer-
ence (pp. 207-212). Stanford University, CA, USA: Stan-
ford Bookstore.

Rosca, J. (1996). Generality versus size in genetic pro-
gramming. In J. R. Koza, D. E. Goldberg, D. B. Fogel, &
R. L. Riolo (Eds.), Genetic programming 1996: Proceed-
ings of the first annual conference (pp. 381-387). Stanford
University, CA, USA: MIT Press.

Schaffer, J. D. (1985). Multiple objective optimization
with vector evaluated genetic algorithms. In J. J. Grefen-
stette (Ed.), Proceedings of the 1st international conference
on genetic algorithms and their applications (pp. 93-100).
Pittsburgh, PA: Lawrence Erlbaum Associates.

Soule, T. (1998). Code growth in genetic programming.
Unpublished doctoral dissertation, University of Idaho.

Soule, T., & Foster, J. A. (1999). Effects of code growth
and parsimony presure on populations in genetic program-
ming. Evolutionary Computation, 6(4), 293-309.

Soule, T., Foster, J. A.; & Dickinson, J. (1996). Code
growth in genetic programming. In J. R. Koza, D. E. Gold-
berg, D. B. Fogel, & R. L. Riolo (Eds.), Genetic program-
ming 1996: Proceedings of the first annual conference (pp.
215-223). Stanford University, CA, USA: MIT Press.

Tackett, W. A. (1993). Genetic programming for feature
discovery and image discrimination. In S. Forrest (Ed.),
Proceedings of the 5th international conference on genetic
algorithms, icga-93 (pp. 303-309). University of Illinois at
Urbana-Champaign: Morgan Kaufmann.

Van Veldhuizen, D. A. (1999). Multiobjective Evolution-
ary Algorithms: Classifications, Analyses, and New Inno-
vations. Unpublished doctoral dissertation, Department
of Electrical and Computer Engineering. Graduate School
of Engineering. Air Force Institute of Technology, Wright-
Patterson AFB, Ohio.

Zissos, D. (1972). Logic design algorithms. London: Oxford
University Press.

