Logical Computation on a Fractal Neural Substrate

Simon D. Levy and Jordan B. Pollack

Brandeis University
Computer Science Department
Waltham, MA 02454, USA

levy, pollack@cs.brandeis.edu

Abstract

Attempts to use neural networks to model recursive
symbolic processes like logic have met with some suc-
cess, but have faced serious hurdles caused by the lim-
itations of standard connectionist coding schemes. As
a contribution to this effort, this paper presents recent
work in Infinite RAAM (IRAAM), a new connectionist
unification model based on a fusion of recurrent neural
networks with fractal geometry. Using a logical pro-
gramming language as our modeling domain, we show
how this approach solves many of the problems faced
by earlier connectionist models, supporting arbitrarily
large sets of logical expressions.

1 Introduction

Logical computation, as represented by programming
languages such as Prolog [3], is a classic example
of a recursive symbolic system. Atoms, or prim-
itives (fred, wilma, loves) are combined to form
propositions (loves(fred, wilma)), which can in
turn combine with other propositions (knows (barney,
loves(fred,wilma))), ad infinitum. Attempts to
build connectionist models of such systems have gener-
ally followed one of three approaches.

The first of these, exemplified by [15], dispenses en-
tirely with traditional representations (data structures)
and rules (algorithms on those structures), in favor of
letting the network “learn” the patterns in the data
being modeled, via the well-known back-propagation
algorithm [14] or a similar training method. This ap-
proach became the subject harsh criticism, based on
the disparity between the strength of the claims made
and the actual results reported [9], as well as the appar-
ent inability of such systems to handle the systematic,
compositional aspects of meaning in recursive symbol
systems [5].

The second sort of connectionist approach goes beyond
the rules-and-representations view and directly to the
heart of what computing actually means, by showing
how a recurrent neural network can perform all the
operations of a Turing machine, or more [16]. Though
such proofs may hold a good deal of theoretical interest,
they do not address the degree to which a particular
computational paradigm (connectionism) is suited to a
particular real-world task (logic). They are therefore
not of much use in arguing for or against the merits of
connectionism as a model of any particular domain of
interest, any more than knowing about Turing equiv-
alence will help you in choosing between a Macintosh
and a Pentium-based PC.

The third approach, which some of its proponents have
described as “Representations without Rules” [7], is the
one that we wish to take here. This approach acknowl-
edges the need for systematic, compositional structure,
but rejects traditional, exceptionless recursive rules in
favor of the flexible computation afforded by connec-
tionist representations. Proponents of such a view are
of course responsible for showing how these represen-
tations can support the kinds of processes traditionally
viewed as rules. In the remainder of this paper we show
how the behavior of neural network called an Infinite
RAAM corresponds directly to one such process, unifi-
cation, thereby supporting a systematic, compositional
model of logical computation, as well as other recursive
symbol systems.

2 Unification

Unification, a pattern-matching algorithm popularized
by Robinson [12] as a basis for automated theorem-
proving, is at the core of logical programming languages
like Prolog. The basic unification algorithm can be
found in many introductory Al textbooks (e.g., [11] p.
152), and can be summarized recursively as follows: (1)



A variable can be unified with a literal. (2) Two literals
can be unified if their initial predicate symbols are the
same and their arguments can be unified.

If, for example, we have a Prolog database containing
the assertion male (albert), meaning “Albert is male”,
and we perform the query male(Who), asking “Who is
male?” the unification algorithm will first attempt to
unify male (albert) with male(Who), and will succeed
in matching on the predicate symbol male, by rule (2).
The algorithm will then recur, attempting to unify the
variable Who with the atomic literal albert, and will
succeed by rule (1) and terminate, with the result that
Who will be bound to albert, answering the query.

Of course, real programming-language applications re-
quire unification algorithms more complicated than the
one illustrated in this simple example, but the example
suffices for our goals here.

3 RAAM

Before describing how the Infinite RAAM model is
suited to performing unification, some historical back-
ground on this model is necessary.

Recursive Auto-Associative Memory or RAAM [10] is
a method for storing tree structures in fixed-width vec-
tors by repeated compression. Its architecture consists
of two separate networks: an encoder network, which
can construct a fixed-dimensional code by compres-
sively combining the nodes of a symbolic tree from the
bottom up, and a decoder network which decompresses
this code into its two or more components. The decoder
is applied recursively until it terminates in symbols, re-
constructing the tree. These two networks are simul-
taneously trained as an autoassociator [1] with time-
varying inputs. If the training is successful, the result
of bottom up encoding will coincide with top-down de-
coding. Figure 1 shows an example of a RAAM for
storing binary trees using two bits of representation
for each input and output:'a = 01, b = 10. Solid lines
depict encoder weights, dashed lines decoder weights.
Note the real-valued representation of the tree (a b)
on the hidden layer, which would be fed back into the
encoder to build a representation of the trees (a(a b)),
(b(a b)), ((a b)a), etc.

IRestricting the network to only two bits per symbol allows
straightforward visualization of its hidden-layer dynamics as an
X/Y plot. RAAMs for real-world tasks would use many more
bits per symbol.

S

7/

\

\
\ \

b
7
>
/N

NN
7

Hidden

Input

a b Bias

Figure 1: RAAM encoding and decoding the tree (a b)

4 RAAM as an Iterated Function System

Consider the RAAM decoder shown in Figure 2. It con-
sists of four neurons that each receive the same (X,Y)
input. The output portion of the network is divided
into a right and a left pair of neurons. In the operation
of the decoder the output from each pair of neurons is
recursively reapplied to the network. The bar at the
top of the figure is a “gate” that determines whether it
is the the left or the right output that will be reapplied.

Using the RAAM interpretation, each such recursion
implies a branching of a node of the binary tree repre-
sented by the decoder and initial starting point. How-
ever, this same network recurrence can also be evalu-
ated in the context of dynamical systems. This network
is a form of iterated function system (IFS) consisting of
two transforms, which are iteratively applied to points
in a two-dimensional space.

Figure 2: Detail of RAAM decoder

In a typical IFS [2], the transforms are linear equations
of the form T;(x) = A;z+ b;, where z and b are vectors



and A is a matrix. The Iterated part of the term IFS
comes from the fact that, starting with some initial z,
each of the transforms is applied iteratively to its own
output, or the output of one of the other transforms.
The choice of which transform to apply is made either
deterministically or by non-deterministic probabilities
associated with each transform. If the transforms T;
are contractive, meaning that they always decrease the
distance between any two input vectors 2 and y, then
the limit of this process as the number of iterations
N approaches infinity yields an attractor (stable fixed-
point set) for the IFS. Most IFS research has focussed
on systems whose attractor is a fractal, meaning that
it exhibits self-similarity at all scales.

The transforms of the RAAM decoder have the form
Ti(z) = f(A;z + b;), where f is the familiar logistic-
sigmoid “squashing” function f(z) = 1/(1+e~*). Typ-
ical of connectionist models, the matrix A ranges over
the entire set of real numbers, so it is not necessarily
contractive. Nevertheless, the squashing function pro-
vides a “pseudo-contractive” property that yields an at-
tractor for the decoder. In the context of RAAMs, how-
ever, the main interesting property of (pseudo-) con-
tractive IFSes lies in the trajectories of points in the
space. For such IFSes the space is divided into two
sets of points. The first set consists of points located
on the underlying fractal attractor of the IFS. The sec-
ond set is the complement of the first, points that are
not on the attractor. The trajectories of points in this
second set are characterized by a gravitation towards
the attractor, as follows: Each iteration produces a set
of left and right copies of the points from the previous
iteration. Finite, multiple iterations of the transforms
have the effect of bringing the set of copies arbitrarily
close to the attractor.

Dividing the space in this way allowed us to solve a
vexing problem in the behavior of the decoder: Un-
like the encoder, whose feedback terminates once it
has exhausted the set of trees that make up its input,
the decoder has no way of “knowing” when it is has
decoded a terminal representation — that is, when its
output is arbitrarily close enough to zero or one. Using
a standard threshold (< 0.2 = 0; > 0.8 = 1) solved this
problem to some extent, but led to several other prob-
lems, such as infinite loops and premature termination,
that limited the scalability of the RAAM model. Us-
ing membership in the attractor as the “terminal test”
of the decoder completely solves these problems, and
allows the model to represent extremely large sets of
trees in small fixed-dimensional neural codes. The at-
tractor, being a fractal, can be generated at arbitrary
pixel resolution. In this interpretation, each possible

tree, instead of being described by a single point, is
now an equivalence class of initial points sharing the
same tree-shaped trajectories to the fractal attractor.

Using the attractor as a terminal test also allows a
natural formulation of assigning labels to terminals.
Barnsley [2] noted that each point on the attractor is
associated with an address which is simply the sequence
of indices of the transforms used to arrive on that point
from other points on the attractor. The address is es-
sentially an infinite sequence of digits. Therefore to
achieve a labeling for a specific alphabet we need only
consider a sufficient number of significant digits from
this address.

These ideas are encapsulated in Figure 3, which shows a
“Galaxy” attractor obtained by iterative Blind Watch-
maker selection [4] to a visually appealing shape,
along with sample derivations of the trees (a b) and
(a (a b)). In this figure, attractor points with ad-
dresss a, reachable from the attractor on the left trans-
form, are colored dark gray; points with address b,
reachable on the right transform, are light gray. The
left transients to the attractor are shown as dashed
lines, and the right transients as solid lines.

1

(a(ab)

Figure 3: The Galaxy attractor and two of its trees

5 Infinite RAAM

With the “on-the-attractor” terminal test, we were able
to use hill-climbing to train a RAAM decoder to gener-
ate all and only the strings in the set a”b"Ua™b" 1, n <
5. As the simplest example of a non-regular, context-
free formal language, a™b™ has been used as a target
set by a number of recurrent-network research projects
([13, 18]), so it serves as a benchmark for the formal



power of a model such as RAAM. Analysis of the de-
coder weights of this a”b™ RAAM revealed a pattern
that we were able to generalize into a formal construc-
tive proof for deriving a set of weights to generate this
language for arbitrarily large values of n, as a function
of the pixel resolution e [8].

With this proof in hand, we felt justified in using the
term Infinite RAAM (IRAAM) to refer to our decoder
networks. Against a traditional approach to problems
like logic, in which recursive symbol systems are held
to be the only sufficiently generative models and neural
networks are seen as mere finite-capacity implemen-
tations [5], the formally proven existence of a set of
“pure” a™b™ weights provided evidence that a neural
network can serve as an infinitely generative model,
under a dynamical-systems interpretation of the net-
work’s behavior.

6 Unification-based IRAAM

Nevertheless, a fundamental problem exists in the gen-
eral case when investigating the capacity of a given
TRAAM decoder via discrete sampling of the space of
tree equivalence classes. Transients to the attractor
can potentially meander around the entire unit space
before coming to rest on the attractor, so the potential
depth of the trees encoded using even a low-resolution
sampling is quite large. Because the number of possible
trees grows factorially with the depth of the trees, the
discrete sampling method is therefore doomed to find
only an infinitesimal portion of the trees that a given
IRAAM could be encoding. Solving this problem re-
quires knowing precisely how many trees to search for,
and where to find them.

To limit the number of trees, it is sufficient to limit
the number of IFS iterations. Like sampling, limiting
the iterations produces only an approximation to the
actual, infinite attractor. For zero iterations, the entire
space is the attractor approximate, and the only tree
encoded is a terminal, which we may refer to generically
as X. For one iteration, each point not on the attractor
goes to the attractor on one iteration, and the only tree
encoded is (X X). For two iterations, the trees encoded
are (X (X X)), (X X) X),and (X X) (X X)), and
so on for more iterations. This solves the first part of
the problem.

Solving the second part of the problem — locating the
trees in space — requires switching from a “top-down”
approach to a “bottom up” approach. We no longer
start at a point off the attractor and decode the tree as

this point’s path to the attractor. Instead, we start at
a point (or set of points) on the attractor, and ask what
other point(s) that point can be unified with, using the
encoder: hence the term unification-based IRAAM.

To perform this unification, we first compute the at-
tractor, then take its image under the left and right
inverses of the transforms. Unifications (trees) are
located precisely within the intersections of these in-
verses. Under this interpretation, asking whether two
representations can be unified means asking whether
their inverses have a non-empty intersection.

For example, to determine the locations of the binary
trees of depth two or less, we must first iterate the IFS
twice, producing the attractor approximate Ay, which
encodes the abstract terminal tree X. This process is de-
picted in Figure 4. As the figure shows, the IFS can be
thought of as a kind of broken copy machine, which pro-
duces two distorted copies (left and right transforms) of
its input. The union of these two copies then becomes
the input to the machine on the next iteration. The
first iteration makes two copies of the unit square (the
attractor approximate Ap), as shown in (7). The union
of these copies (i), the attractor approximate A, is
fed back into the machine, which makes two copies of
it (#4). The union of these two copies is the attractor
approximate A, shown in (iv).

o1 0z 03 04 05 06 07 08 09 1

(ii)

Figure 4: Two iterations of the Galaxy IFS



The attractor from (iv) is the region encoding the “ter-
minal tree” X. Intersecting the left and right inverses of
this region gives us the region encoding the tree (X X).
To encode the tree ((X X) X), we take the left inverse
of this (X X) region and intersect it with the right in-
verse of the attractor. Swapping “left” for “right”,
the same operations can be done to obtain the tree
(X (X X)).Finally, the tree ((X X) (X X)) isencoded
by the region not encoding any of the other trees.

7 Labeling the Terminals

The discussion of the hill-climbing a™b™ decoder de-
scribed a scheme for labeling the points of the attractor
terminal set by means of their fractal addresses. The
method involved approximating the attractor at some
pixel resolution, then labeling each attractor point by
the transform(s) on which that point was reachable
from any points on the attractor. This scheme can-
not be implemented in a model in which the attractor
is approximated by iteration, because the only points
reachable from the current attractor approximate Ay
lie on the approximates Anyr,k > 1. Since these
points themselves are not on the part of Ay reachable
from outside Ay , this scheme cannot be used to label
the terminals of trees, which by definition are transients
to the attractor from points outside it.

As Figure 4 illustrates, the approximated attractor is
a connected set of points lying in a bounded region
in space. Therefore, it is possible to treat the label-
ing task as a partitioning problem, in which each label
corresponds to a distinct sub-region of the attractor.
Under this interpretation, deriving a RAAM for a set
of logical propositions requires coming up with (1) a
set of decoder weights and (2) a set of partitions on
the attractor induced by treating those weights as IFS
transforms, such that the unifications (trees) over the
partitions yield exactly those propositions, and no oth-
ers.

As a first step toward solving this problem, we took
a fixed set of decoder weights and used hill-climbing
to obtain a set of attractor partitions yielding the
following small set of propositions, borrowed with
modification? from the introductory tutorial to a stan-
dard Prolog textbook [3]:

2The propositions were put into prefix form to correspond
to the equivalent binary trees, so that, e.g., female(alice) be-
came (female alice). The parent predicate was changed from
a two-argument to a one-argument predicate, encoding only par-
enthood, and not who was the parent of whom.

(male albert).
(male edward).
(female alice).
(female victoria).
(parent victoria).
(parent albert).

Each of the seven terminals (male, female, parent,
albert, edward, victoria, alice) was represented
as a distinct circular region on the attractor.> The
initial locations (centers) of the circles were chosen so
as to fall in the portion of the attractor reachable on
the appropriate transform: male, female, and parent
were on the part of the attractor reachable from the
unit square on the left transform, and albert, alice,
edward, and victoria were on the part of the attractor
reachable on the right transform. On each hill-climbing
iteration the center and radius of each circle were mu-
tated by the addition of a small amount normally-
distributed random noise. This noise was scaled by
the “error” for the center point, defined as the average
distance between the point’s inverse and the inverses
of the center points of the labels with which that point
needed to unify. If the added noise moved the inverses
closer together, the mutated center and radius became
the new center and radius for the label.

Using a number of different initial conditions, hill-
climbing was a able to discover a set of circular la-
beled regions for the small set of propositions after
several hundred iterations. One such solution is shown
in Figure 5, which displays the part of the attractor
where the labels ended up. The predicates are the
left side of the figure and the arguments in the upper-
right part of the figure (a=albert, c=alice, e=edward,
v=victoria, m=male, f=female, p=parent). The trees
(unifications / intersections of inverses) appear as el-
liptical regions at the top of the figure.

Having obtained these labels, we can see how they
work in conjunction with the weights to answer logi-
cal queries about the database. Consider, for exam-
ple, the Prolog query female(Who), corresponding to
the English question “Who is female?” If we load
our six-proposition database into a Prolog interpreter
and pose this query, the interpreter will answer Who
= alice; Who = victoria. To answer the question
using our IRAAM model, we locate the region (circle)
corresponding to the predicate female, take the left in-
verse transform of this region, and then take the right
forward transform of that inverse. The regions inter-
sected by the resulting shape contain the answer to

3Using a circle or other convex shape makes it easy to deter-
mine intersections parametrically.



Figure 5: Attractor partitions obtained by hill-climbing

our query. For the attractor and labels shown in Fig-
ure 5, those regions are the circles labeled alice and
victoria.

8 Conclusion and future work

The small hill-climbing experiment reported here
provides a minimal proof-of-concept for applying
unification-based RAAM to a problem in logical com-
putation. This particular problem is not terribly in-
teresting, as its solution is essentially a Venn diagram;
it lacks the complexity and depth of real propositional
tree structures. However, there is nothing inherent in
the RAAM model or the partitioning algorithm that
restricts us to such shallow examples, and we are cur-
rently working on extending the algorithm to trees of
depth three and more. Future work will attempt to in-
tegrate the discovery of both the network weights and
the partitions, using a co-evolutionary paradigm of the
sort described in [6].

Fractal representation of structured information in neu-
ral networks is a relatively new field, and we have yet
to test the model on substantial empirical data. We
are however encouraged by the success of related work
in fractal encoding of grammars [17], and see our work
as contributing to this effort. We hope that such work
will serve as a foundation for a principled “unification”
of connectionist approaches with more traditional sym-
bolic models, perhaps as an alternative to hybrid meth-
ods.

References

[1] D. H. Ackley, G.E. Hinton, and T.J Sejnowski. A
learning algorithm for boltzmann machines. Cognitive Sci-
ence, 9:147-169, 1985.

[2] M.F.Barnsley. Fractals everywhere. Academic Press,
New York, 1993.

[3] W.F. Clocksin and C.S. Mellish. Programming in
Prolog. Springer Verlag, Berlin, 1994.

[4] R. Dawkins. The Blind Watchmaker: Why the Ev-
idence of Ewvolution Reveals a Universe Without Design.
W.W. Norton and Co., New York, 1986.

[6] J.A. Fodor and Z.W. Pylyshyn. Connectionism and
cognitive architecture: A critical analysis. Cognition, 28:3—
71, 1988.

[6] W.D. Hillis. Co-evolving parasites improves simu-
lated evolution as an optimization procedure. In C. Lang-
ton, C. Taylor, and J.D. Farmer, editors, Artificial Life II,
pages 313-324. Addison Wesley, 1992.

[7] T. Horgan and J. Tienson. Representations without
rules. Philosophical Topics, XVII(1):147-175, 1989.

[8] O.Melnik, S. Levy, and J.B. Pollack. Raam for an in-
finite context-free language. In IJCNN 2000. International
Joint Conference on Neural Networks, IEEE, 2000.

[9] S. Pinker and A. Prince. On language and connec-
tionism: Analysis of a parallel distributed processing model
of language acquisition. Cognition, 28:73-193, 1988.

[10] J.B. Pollack. Recursive distributed representations.
Artifical Intelligence, 36:77-105, 1990.

[11] E. Rich and K. Knight.
McGraw-Hill, New York, 1991.

[12] J.A. Robinson. A machine-oriented logic based on
the resolution principle. Journal of the ACM, 12(1):23-41,
1965.

[13] P. Rodriguez, J. Wiles, and J.L. Elman. A recurrent
neural network that learns to count. Connection Science,
11:5-40, 1999.

[14] D.E. Rumelhart, G.E. Hinton, and R.J. Williams.
Learning internal representation by error propagation. In
D.E. Rumelhart and J.L. McClelland, editors, Parallel Dis-
tributed Processing: Ezplorations in the Microstructure of
Cognition, volume 1. MIT, 1986.

[15] D.E. Rumelhart and J.L. McClelland. On learning
the past tenses of english verbs. In D.E. Rumelhart and
J.L. McClelland, editors, op. cit., volume 2. 1986.

[16] H. Siegelmann. Computation beyond the turing
limit. Science, 268:545-548, 1995.

[17] W. Tabor. Fractal encoding of context-free gram-
mars in connectionist networks. Ezpert Systems: The In-
ternational Journal of Knowledge Engineering and Neural
Networks,, 17(1):41-56, 2000.

[18] R.J. Williams and D. Zipser. A learning algorithm for
continually running fully recurrent neural networks. Neural
Computation, 1:270-280, 1989.

Artificial Intelligence.



