Context-based policy search: transfer of experience across problems

Leonid Peshkin

Harvard Center for Artificial Intelligence
Dworkin Bld. 134, Cambridge, MA 02138

Edwin D. de Jong

Computer Science Department
Brandeis University, Waltham, MA 02454-9110

Abstract

An important question in reinforcement
learning is how generalization may be per-
formed. This problem is especially impor-
tant if the learning agent receives only par-
tial information about the state of the en-
vironment. Typically, the bias required for
generalization is chosen by the experimenter.
Here, we investigate a way for the learn-
ing method to extract bias from learning one
problem and apply it in subsequent prob-
lems. We use a gradient-based policy search
method, and look for controllers that consist
of a context component and an action compo-
nent. Empirical results on a two-agent coor-
dination problem are reported. It was found
that learning a bias made it possible to ad-
dress problems that were not solved other-
wise.

1. Introduction

Reinforcement learning problems with large state
spaces typically require the use of generalization. Any
form of generalization implies that choices must be
made regarding the similarity of different situations,
and any such choices constitute a bias. The success
of a particular method for generalization depends on
whether this bias is appropriate for the problem at
hand [12].

For standard Markov Decision Processes (MDPs) the
observation of the learner captures all relevant infor-
mation about the state of the environment. In Par-
tially Observable MDPs (POMDPs), the choice of the
appropriate action may in principle depend on all pre-

OThe current version and related work available from
http://www.eecs.harvard.edu/ pesha/papers.html

pesha@ai.mit.edu

edwin@cs.brandeis.edu

vious observations. Thus, the learner has to extract
relevant information from the history of its interac-
tions with the environment. This renders the need for
appropriate generalization even more pressing.

While in general it may not always be possible to
recover all required information about the state of
the environment from observations, a certain class of
POMDPs can be reduced to MDPs by distinguishing
among different contexts in which the agent may find
itself, and providing the current context as an extra
input. A context here refers to a subset of the possi-
ble histories of interaction between the agent and its
environment, which consist of observations, actions,
and rewards. If contexts with the above property can
be extracted from the interaction history, then the
remaining problem can be addressed using the stan-
dard reinforcement learning methods. For information
about reinforcement learning in general the reader may
consult [15, 16, 10].

For problems having the above structure, the optimal
policy can be described as a set of behaviors, each
of which corresponds to a particular context. In this
paper, we suggest that this structure has a poten-
tial for meta-learning. If related environments require
similar behaviors, while differing in their correspon-
dence between contexts and input observations, then
behaviors can be transferred from previously solved
problems to more difficult variants of those prob-
lems. Thus, we have identified a particular mechanism
for extracting useful bias from related problems (see
e.g. [5, 4, 2, 3, 6]), and a corresponding class of prob-
lems which could benefit from this mechanism. We
investigate this method for a simple case, and report
empirical results.



2. Architecture and Learning
Mechanism

Partial observability of the environmental state re-
quires the policy representation to include some form
of memory in order to specify the optimal policy. In
our case, this is achieved by using a finite state con-
troller (see e.g. [11]). Furthermore, in order to find
optimal policies for partially observable problems, the
learning method must be able to search for policies
that use memory. To this end, we employ a gradient-
based method for policy search, see [13, 1] for the gen-
eral method and [14] for the discussion of cooperation
without explicit coordination in agents controlled by
FSCs.

The main idea of this paper is to search for policies
that can be described as a set of contexts and cor-
responding behaviors, so that the behaviors can be
transferred between problems. To make this possible,
we construct the agent from two components, see fig-
ure 1. The first component, called the context compo-
nent, determines the current context from the interac-
tion history. In general this history may include past
observations, actions and rewards. In this particular
problem, the context component uses the current ob-
servation and the context at the previous time step to
determine the current context. The action component
receives the current context and, optionally, the ob-
servations as input, and specifies a behavior or partial
policy for each context.

context

context action action
component L component
i

observation

Figure 1. Proposed architecture. The context component
determines the current context from the previous observa-
tion and context. The action component uses this informa-
tion, possibly in combination with the current observation,
to produce a corresponding behavior.

Separating the context and action components in the
representation of a policy allows these components to
be learned separately. Other examples of taking ad-
vantage of such controller structure are presented in
[9] and [7, 8]. The former uses a controller consist-
ing of two disjoint neural networks, while the latter
demonstrates how to use the natural continuity of the
Euclidean coordinate system to generalize over the ob-

servation space.

In order to transfer experience, we find an optimal
controller on a small instance of the problem at hand,
and retain the action component of the controller when
scaling up to a larger instances of the problem. This
provides a natural way to incorporate bias into the
learning process.

The finite state controller will now be described in
more detail. The controller consists of an internal state
transition function that determines the context from
observations, and an action function that associates
each context with a corresponding behavior.

s(t) s(t+1)

Figure 2. An influence diagram for agent with FsCs in
POMDP.

The complete controller for an agent with action space
A and observation space O is a tuple (M, pq, im),
where M is a finite set of internal controller states
(contexts); pm: M xO — P(M) is the internal state
transition function that maps an internal state and ob-
servation into a probability distribution over internal
states; and p, : M — P(A) is the action component
that maps an internal state into a probability distri-
bution over actions. We assume that both the internal
state transition function and the action function are
stochastic, that their derivatives exist, and that these
are bounded away from zero. Figure 2 depicts an in-
fluence diagram for an agent using this controller.

We consider series of problems that require similar be-
haviors. Thus, by retaining the part of the policy p,
that specifies the behaviors learned on a small prob-
lem, a useful starting point for addressing larger but
similar problems is obtained. The context component
fm on the other hand must be learned anew, since the
particular observations that identify each context may
vary across different environments. In the following
sections, we first describe the task in detail, than ex-
periments are reported that illustrate the advantage of
aforementioned learning with bias.



3. Task Description: Block Moving

The metaphor for the task used in the experiments is
“block moving” which is a multi-agent problem derived
from the “load-unload” problem [11, 13]. It requires
the cooperation of two agents and constitutes a coor-
dination problem in the sense that the agents need to
adjust their actions to one another. This produces a
non-trivial form of partial observability. In the real-
world version of this problem, the activity of the two
people lifting a heavy block should be synchronized
for satisfactory results, and thus requires coordinating
the moment at which to start moving. The informa-
tion about the state of each agent is exchanged through
(possibly non-verbal) communication.

s A A0

Figure 3. State transition function.

In the simple, abstract task we study here, the process
is modeled as follows. Each agent can move indepen-
dently between several locations (see figure 3 for three
locations example). When two agents are in state S3,
they automatically load a block. From then on, they
must move in synchrony in order not to drop the load.
Since the agents perceive only their own location and
not that of the other agent, communication is neces-
sary.

The reward function for the task is depicted in figure 4.
The states in this diagram are collective states, speci-
fying the state of both the first and second agent (Al
and A2). Connections without arrows mark transi-
tions that can have either direction. The projection of
the diagram onto either horizontal axis yields the state
transition diagram for a single agent shown above in
figure 3.

The reward function not only depends on the current
state of both agents, but also on a history of both
of their states. The only aspect of this history that is
relevant to the reward function is whether the load has
been lifted and not dropped since it was lifted. The
two collective states with this property are in the upper
level of the diagram, marked loaded. All remaining
collective states are at the lower, unloaded level.

A potential for communication is provided as follows.
In addition to the action an agent can select to move
between states, each agent has a single bit that it can
set or reset. Each agent reads the bits of all other
agents, in addition to the sensor information speci-
fying its own location. If both agents would always

Loaded |oag

 unload
A2:SL

Unloaded

A1:S3 AL:S2 AlSl

Figure 4. The reward structure for “block moving” do-
main.

start in state S1, they could learn to move to state S3
as quickly as possible, and return to S1 from there.
This ballistic policy would cause them to move in syn-
chrony, without any need for communication. In order
to disallow this strategy, the initial position of each
agent is selected randomly from all locations except
“load”.

For the three-location instance depicted in figure 3 the
optimal strategy has the following form. Each agent
moves to state 53, informs the other agent of its pres-
ence there and, if necessary, waits for the other agent
to arrive. Then each agent moves to 52, and from
there back to S1. If both agents execute this policy,
they move together after picking up their load. Thus,
by the use of communication, the agents can synchro-
nize their behavior and collect the maximum amount
of reward.

Part of the difficulty of this task is that it requires es-
tablishing a convention. While it is clear that the only
possibility for communication is for each agent to set
or reset its bit, the sending and receiving agent must
converge on the same choice of which setting to use for
which case. Since both agents are equivalent and may
function both as sender and as receiver, this problem
needs to be solved twice (not necessarily in the same
way). A greater difficulty than the selection of such
a convention however is that of settling on sending
and receiving behavior simultaneously; while the first
agent to arrive can only determine whether the second
agent has arrived through communication, the second
agent can only discover that signaling this information
is useful if the first agent acts on it, using the same
convention. The necessity to simultaneously arrive at
compatible communication and action policies makes



Size 4 biased Wﬂmﬂ
09r M
0.8

I

0.7+ size5 biased B
0.6 q
size 4, unbiased
0.5 4
041 B
03 —

0.2 —

0.1 b
size5 unbiased

0 n L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 5. Empirical comparison of biased and unbiased
learning by policy search in FsCs for the “block lifting”
environment of various size.

the block moving problem a challenging one.

The difficulty of the problem strongly depends on the
size of the problem instance. A version of the prob-
lem with three states has been described, involving
a “load” state (S3), an intermediate state (S2), and
an “unload” state (S1). To obtain larger versions of
the problem, we introduce one or more additional in-
termediate states. Since the part of the policy space
that must be considered grows exponentially with the
length of the smallest optimal policy, even adding one
or two states makes the problem considerably more
difficult.

4. Empirical Results

In our experiments we begin by learning the optimal
policy with no initial bias in the instance of the prob-
lem with three locations all together, counting load
and unload locations. For this trivial instance of the
domain even an exhaustive evaluation of all policies
would be feasible, so it comes as no surprise that agents
rapidly converge to a good policy. The resulting action
function is used as a bias - a starting point for action
functions in learning policies for larger instances of the
domain.

Figure 5 illustrates the advantage of learning with bias
in our domain. All plots are averaged over 10 runs.
The learning rate is kept constant. A policy is learned
in the space of three-state finite space controllers. For
the domain with four locations, both biased and un-
biased learning converge, but unbiased does so after a
significant delay. For the domain with five locations
unbiased learning never picks up for the trial length

used. Using the bias learned on a smaller version of
the problem makes it possible to learn even on this dif-
ficult instance, and turns out to be even more efficient
than unbiased learning for a smaller domain with four
locations.

In the experiments, the action function from a smaller
problem instance was used as a starting point in the
learning process, and could in principle be modified. In
practice, we found that the action component did not
change, and only the context component was learned
anew.

5. Discussion

The signal from the other agent in our environment
formed a part of the observation. A potential change
in the representation of the controller would be to sep-
arate the location from the signal and feed the signal
part of the observation directly into the action func-
tion. This would be justified by the fact that as we
increase the size of the domain, the number and the
semantics of the messages does not change. The loca-
tion numbering on the other hand does change, and
needs to be learned for every instance. Another alter-
native approach to the approach that has been inves-
tigated would be to fix the action function and only
learn internal state transition function. We plan to
experiment with some of these variants of the setup in
future experiments.

In a sense, an agent that develops a categorization into
different situations and learns what behavior to use in
each situation, establishes a convention with itself in
the form of a mapping between contexts and behaviors.
Given a mapping from possible world states to internal
states, there is a corresponding mapping from internal
states to partial policies that in combination leads to
the optimal complete policy.

The issue of arising at a convention becomes more pro-
nounced in problems such as that used here, where
multiple agents have the ability to exchange signals.
This variant of establishing a mapping between inter-
nal states and signals to produce can be seen as a rudi-
mentary form of communication development; while
any consistent signaling convention is sufficient to al-
low agents to produce optimal behavior, and the spe-
cific signaling convention that will be used is therefore
arbitrary, arriving at such a convention is a difficult
coordination problem.



6. Conclusion

We investigated an approach to partially observable
reinforcement learning problems where the represen-
tation of the policy is separated into a context compo-
nent and an action component.

Useful bias was extracted from a simple version of the
problem by retaining the action component. When put
to use on more difficult problems, this method solved
problems which an unbiased approach was unable to
address. In future work, we hope to explore other
mechanisms for extracting bias from learning and uti-
lizing it to aid subsequent learning. We believe this
may in principle make it possible to address problems
that can not practically be addressed by conventional
learning methods.

Acknowledgement

EdJ gratefully acknowledges an NwoO Talent-
fellowship.

References

[1] Leemon C. Baird.  Reinforcement Learning
Through Gradient Descent. PhD thesis, CMU,
Pittsburgh, PA, 1999.

[2] Eric Baum. Neural Networks and Machine Learn-
ing, chapter Manifesto for an Evolutionary Eco-
nomics of Intelligence, pages 285-344. Springer-
Verlag, 1998.

[3] Eric Baum. Toward a model of intelligence as an
economy of agents. Machine Learning, 35:155—
185, 1999.

[4] Eric B. Baum. Evolution of cooperative problem
solving in an artificial economy. Neural Compu-
tation, 12:2743-2775, 2000.

[56] Jonathan Baxter. A model of inductive bias learn-
ing. Journal of Artificial Intelligence Research,
12:149-198, 2000.

[6] Edwin D. De Jong and Jordan B. Pollack. Utiliz-
ing bias to evolve recurrent neural networks. In
Proceedings of the International Joint Conference
on Neural Networks, volume 4, pages 26672672,
2001.

[7] G. Z. Grudic and L. H. Ungar. Localizing policy
gradient estimates to action transitions. In Pro-
ceedings of the Seventeenth International Conf. on
Machine Learning. Morgan Kaufmann, 2000.

[8] G. Z. Grudic and L. H. Ungar. Localizing search
in reinforcement learning. In Proceedings of the
Seventeenth National Conf. on Artificial Intelli-
gence, 2000.

[9] Dean F. Hougen, Maria Gini, and James Sla-
gle. An integrated connectionist approach to re-
inforcement learning for robotic control. In Pro-
ceedings of the Seventeenth International Conf. on
Machine Learning. Morgan Kaufmann, 2000.

[10] Leslie P. Kaelbling, Michael L. Littman, and An-
drew W. Moore. Reinforcement learning: A sur-
vey. Journal of AI Research, 4:237-277, 1996.

[11] Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim,
and Leslie P. Kaelbling. Learning finite-state con-
trollers for partially observable environments. In
Proceedings of the Fifteenth Conf. on Uncertainty
in Artificial Intelligence, pages 427-436. Morgan
Kaufmann, 1999.

[12] Tom M. Mitchell. The need for biases in learning
generalizations. Technical Report CBM-TR-117,
Department of Computer Science, Rutgers Uni-
versity, New Brunswick, New Jersey, May 1980.

[13] Leonid Peshkin. Reinforcement Learning by Pol-
icy Search. PhD thesis, Brown University, Provi-
dence, RI, 2001.

[14] Leonid Peshkin, Kee-Eung Kim, Nicolas Meuleau,
and Leslie P. Kaelbling. Learning to cooperate
via policy search. In Proceedings of the Sixteenth
Conf. on Uncertainty in Artificial Intelligence,
pages 307-314, San Francisco, CA, 2000. Morgan
Kaufmann.

[15] Christian R. Shelton. Importance Sampling for
Reinforcement Learning with Multiple Objectives.
PhD thesis, MIT, Cambridge, MA, 2001.

[16] Richard S. Sutton and Andrew G. Barto. Rein-
forcement Learning: An Introduction. The MIT
Press, Cambridge, MA, 1998.



