Body-Brain Co-evolution Using L-systems as a Generative Encoding

Gregory S. Hornby
Computer Science Department
Brandeis University
Waltham, MA 02454-9110
hornby@cs.brandeis.edu

Abstract

We co-evolve the morphology and controller
of artificial creatures using two integrated
generative processes. L-systems are used as
the common generative encoding for both
body and brain. Combining the languages
of both into a single L-system allows for link-
age between the genotype of the controller
and the parts of the morphology that it con-
trols. Creatures evolved by this system are
more complex than previous work, having an
order of magnitude more parts and a higher
degree of regularity.

1 INTRODUCTION

As computers become more powerful the richness of
virtual worlds is limited only by what can be de-
signed to inhabit them. How can we construct beau-
tiful and complex designs, objects and creatures for
them? 3D virtual creatures have been evolved in sim-
ulation [Komosinski & Rotaru-Varga, 2000], and sim-
ple robots have been evolved for automatic manufac-
ture [Lipson & Pollack, 2000]. Both of these works
have used a direct encoding for the creature morphol-
ogy and controller. In this we return to the spirit of
[Sims, 1994], in which a graph structure was the gen-
erative encoding evolved for creating both the body
and brain of virtual creatures.

Previously we showed that an evolutionary algorithm
(EA) using a Lindenmayer system (L-system) as a gen-
erative encoding outperformed an EA using a non-
generative encoding on an automated design prob-
lem [Hornby & Pollack, 2001]. We then used this sys-
tem to evolve complex morphologies for 2D robots
with motorized joints, each controlled by an oscilla-
tor [Hornby et al., 2001]. Here we describe extensions

Jordan B. Pollack
Computer Science Department
Brandeis University
Waltham, MA 02454-9110
pollack@cs.brandeis.edu

of this work to 3D creatures and to the integration
of neural networks as controllers. Advantages of neu-
ral networks are that they can generate more complex
locomotion patterns than unconnected oscillators and
allow for later progression to the evolution of mor-
phologies with sensors and reactive controllers. Inte-
grating the commands for morphology and controller
in the genotype creates a linkage between them, like
the encoding of [Sims, 1994], and should reduce dis-
ruption under recombination.

L-systems have been used previously for the develop-
ment of artificial neural networks. In [Kitano, 1990)
an L-system on matrices was used to generate the
connectivity matrix of a network. This method does
not naturally extend to the co-evolution of morphol-
ogy along with the neural controller. More compatible
with our original system of producing a string of build
commands is the technique of [Boers & Kuiper, 1992].
Here groupings of symbols inside brackets are used to
specify connectivity of the network. Drawbacks to
this system are that a symbol is used for each neu-
ron, which limits its ability to scale to large networks.
Our system creates networks in a method similar to
that of cellular encoding [Gruau, 1994], with opera-
tors acting on links instead of on the nodes, as in
[Luke & Spector, 1996].

Using this system we evolve both the neural con-
trollers and morphologies of creatures for locomotion.
Whereas the generative encoding of [Sims, 1994] allows
for repetition of segments, it did not produce hierar-
chies of regularity. Our generative encoding system is a
more powerful language with loops, sub-procedure-like
elements, parameters and conditionals and achieves
an order of magnitude more parts than the pre-
vious work of [Komosinski & Rotaru-Varga, 2000],
[Lipson & Pollack, 2000] and [Sims, 1994].

In the following sections we first outline the design
space and describe the components of our generative

design system, then we present our results and finally
close with a discussion and conclusion of our work.

2 EXPERIMENTAL METHOD

In these experiments we evolve a generative genotype
that specifies how to construct both the morphology
and controller of a locomoting creature. A Linden-
mayer system (L-system) is used as the generative
specification system for both body and brain and is
optimized by an evolutionary algorithm (EA). The sys-
tem consists of the network and morphology construc-
tor, the L-system parser, the evolutionary algorithm
and the physics and network simulator.

2.1 MORPHOLOGY CONSTRUCTOR

The morphology constructor and simulator is a 3D
extension of the 2D work in [Hornby et al., 2001].
The morphology constructor builds a model from a
string of build commands to a LOGO-style turtle
[Abelson & deSessa, 1982] using a command language
similar to that of L-system languages for creating
plants [Prusinkiewicz & Lindenmayer, 1990]. As the
turtle moves, bars are created and these become the
morphology of the creature. The commands instruct
the turtle to move forward or backward and to change
orientation, and there are commands for creating ac-
tuated joints.

Figure 1: Building And Simulating A 3D Creature

The commands for this language are: ‘[7,
store/retrieve the current state (consisting of the cur-
rent location and orientation) to and from a stack; {
block }(n), repeat the enclosed block of build com-
mands n times; forward, moves the turtle forward in
the current direction, creating a bar if none exists or
traversing to the end of the existing bar; backward,
goes back up the parent of the current bar; revolute-1,
forward, end with a joint with range 0° to 90° about
the current Z-axis; revolute-2, forward, end with a joint
with range —45° to 45° about the current Z-axis; twist-
90, forward, end with a joint with range 0° to 90°
about the current X-axis; twist-180, forward, end with
a joint with range —90° to 90° about the current X-
axis; up(n), rotate heading n x 90° about the turtle’s Z
axis; down(n), rotate heading n x —90° about the tur-
tle’s Z axis; left(n), rotate heading n x 90° about the
turtle’s Y axis; right(n), rotate heading n x —90° about
the turtle’s Y axis; clockwise(n), rotate heading n x 90°
about the turtle’s X axis; and counter-clockwise(n), ro-
tate heading n x —90° about the turtle’s X axis.

When evolving oscillating motors, and not neural con-
trollers, the oscillation function of a joint is speci-
fied as in [Hornby et al., 2001] by adding a parame-
ter to revolute-1, revolute-2, twist-90, and twist-180
to specify the rate of oscillation and by adding the
following two commands to control the phase off:
increase-offset(n), increase phase offset by nx25% and
decrease-offset(n), decrease phase offset by n x 25%.

An example of a creature constructed using this lan-
guage is shown in figure 1. The single bar in figure 1.a
is built from the string, [left(1) forward(1)], and the
two bar structure in figure 1.b is built from, [left(1)
forward(1) | [right(1) forward(1) |. The final crea-
ture is made from the command sequence, [left(1)
forward(1) | [right(1) forward(1) | revolute-1(1) for-
ward(1), and is shown in figure 1.c. Figure 1.d displays
the creature with the actuated joint moved half-way
through its joint range.

2.2 NETWORK CONSTRUCTOR

The method for constructing the neural controllers for
the artificial creatures is similar to that of cellular en-
coding [Gruau, 1994], with two main differences. The
first difference between this work and that of cellular
encoding is that strings of build commands are used
instead of trees of build commands, although the push
and pop operators (described later) add a branching
ability to the strings. The other difference is that build
commands operate on the links connecting the nodes
as with edge encoding [Luke & Spector, 1996] instead
of on the nodes of the network. Advantages of edge

encoding are that at most one link is created with a
build command so each build command can specify
the weight to attach to that link and, unlike cellular
encoding, sub-sequences of build commands will con-
struct the same sub-network independent of where in
the build-tree they are located.

Commands for constructing the network operate on
links between neurons and use the most recently cre-
ated link as the current one. Push and pop operators,
‘' and ‘], are used to store and retrieve the current
link — consisting of the from-neuron, the to-neuron and
index of the link into the to-neuron (for when there
are multiple links between neurons) — to and from the
stack. This stack of edges allows a form of branch-
ing to occur in an encoding — an edge can be pushed
onto the stack followed by a sequence of commands
and then a pop command makes the original edge the
current edge again. For the following list of commands
the current link connects from neuron A to neuron B.

e decrease-weight(n) — Subtracts n from the weight
of the current link. If the current link is a virtual
link, it creates it with weight —n.

e duplicate(n) — Creates a new link from neuron A
to neuron B with weight n.

e increase-weight(n) — Add n to the weight of the
current link. If the current link is a virtual link,
it creates it with weight n.

e loop(n) — Creates a new link from neuron B to
itself with weight n.

e merge(n) — Merges neuron A into neuron B by
copying all inputs of A as inputs to B and replac-
ing all occurrences of neuron A as an input with
neuron B. The current link then becomes the nth
input into neuron B.

e next(n) — Changes the from-neuron in the current
link to its mth sibling.

e output(n) — Creates an output-neuron, with a
linear transfer function, from the current from-
neuron with weight n. The current-link continues
to be from neuron A to neuron B.

e parent(n) — Changes the from-neuron in the cur-
rent link to the nth input-neuron of the current
from-neuron. Often there will not be an actual
link between the new from-neuron and to-neuron,
in which case a virtual link of weight 0 is used.

e reverse — Deletes the current link and replaces it
with a link from B to A with the same weight as
the original.

0.25

=
o
©

0.25
a.

0.25
08))3 025/ 53g))3
c d.

Figure 2: Constructing A Network

e set-function(n) — Changes the transfer function of

the to-neuron in the current link, B, with: 0, for
sigmoid; 1, linear; and 2, for oscillator.

e split(n) — Creates a new neuron, C, with a sigmoid
transfer function, and moves the current link from
A to C and creates a new link connecting from
neuron C' to neuron B with weight n.

The sequence of networks in figure 2 are intermedi-
ate networks in parsing, split(0.8) duplicate(3) reverse
split(0.8) duplicate(2) reverse loop(1) split(0.6) du-
plicate(0.4) split(0.6) duplicate(0.4) reverse parent(1)
merge(1). Networks start with a single neuron, a,
with an oscillator function, which has a single link,
of weight 0.25, feeding to itself, figure 2.a. The se-
quence of intermediate networks after: split(0.8), is b;
duplicate(3), is c¢; reverse, is d; split(0.8) duplicate(2)
reverse, is e; loop(1), is f; split(0.6) duplicate(0.4)
split(0.6) duplicate(0.4) (which results in the current
link being a virtual link from neurons b to e), is g; and
after merge(1), the final network is shown in h.

Neurons in the network are initialized to an out-
put value of 0.0 and are updated sequentially by ap-
plying a transfer function to the weighted sum of
their inputs with their outputs clipped to the range
+1. The different transfer functions are: a sig-
moid, using tanh(sum of inputs); linear; and an
oscillator. The oscillator maintains a state value,
which it increases by 0.01 each update. Its output
is its state value plus the weighted sum of its in-
puts mapped to a triangle-wave function with pe-
riod 4 and a minimum of -1 and maximum of 1.
Use of an oscillator increases the bias towards net-
works whose outputs cycle over the sigmoid-only
networks used in [Komosinski & Rotaru-Varga, 2000,
Lipson & Pollack, 2000] but is a more simple model
than that of [Sims, 1994] which had a variety of trans-
fer functions and oscillating neurons.

2.3 COMBINING BODY AND BRAIN

To simultaneously create a creature’s neural controller
and morphology, the languages for constructing a neu-
ral network and for constructing a body are com-
bined. When processing the command string, a neural-
construction command affects the construction of the
neural controller and a morphology-construction com-
mand affects the construction of the body, with a few
modifications. Push and pop operators, ‘[" and ‘]’ are
used to store and retrieve the current construction
state, which now consists of the current link and the
current location and orientation on the body. To give
the neural controller control of the body, each time
a joint command (revolute-1, revolute-2, twist-90 or
twist-180) is executed, the neural-command output(1)
is also called. This output neuron then controls the
joint angle of the actuated joint.

Once a string of build commands has been executed
and the resulting creature is constructed, its behav-
ior is evaluated in a quasi-static kinematics simulator,
similar to that used by [Lipson & Pollack, 2000]. First
the neural network is updated to determine the desired
angles of each actuated joint. Then the kinematics are
simulated by computing successive frames of moving
joints in small angular increments of at most 0.06°.
After each update the structure is then settled by de-
termining whether or not the creature’s center of mass
falls outside its footprint and then repeatedly rotating
the entire structure about the edge of the footprint
nearest the center of mass until it is stable.

2.4 PARAMETRIC L-SYSTEMS

The strings of build commands are generated by a
context-free, parametric Lindenmayer-system (POL-
system). L-systems are a grammatical rewriting sys-
tem introduced to model the biological development
of multicellular organisms [Lindenmayer, 1968]. Rules
are applied in parallel to all characters in the string
just as cell divisions happen in parallel in multicellu-
lar organisms. For example, the L-system,

a: —ab
b: —ba

if started with the symbol a, produces the following
strings,
a
ab
abba
abbabaab

A parametric L-system [Lindenmayer, 1974] is a class
of L-systems in which production rules have param-
eters and algebraic expressions can be applied when
parameter values to successors. Parameter values can
also be used in determining which production rule to
apply. For example, the POL-system,

a(n): n>1) —a(n—1)bn)
a(n): n<1) —a(0)

bn): (n>2) —-bn/2)a(n-1)
bn): (n<2) —b0)

When started with a(4), the POL-system produces the
following sequence of strings,

a(4)

)b(2)a(3)
1.5)a(2)b(0)a(2)b(
b(2)b(0)a(1)b(2)b(
)6(0)a(0)b(0)b(
)6(0)a(0)b(0)b(0

Advantages of a parametric L-system are a POL-
system can produce a family of structures, with the
specific structure created being determined by the
starting parameters. Similarly, parameters can be
used so that repeating patterns of connections will
have different weights. An example of a POL-system
for a network is,

P0O(n0) :
n0 >1.0— P1(n0) PO(n0 —1)

n0 > 0.0 = loop(l) P1(1) parent(1) merge(1)
P1(n0) :
n0 > 1.0 — split(0.8) duplicate(n0) reverse

n0 > 0.0 » {split(0.6) duplicate(0.4)}(2) reverse

This L-system consists of two productions, each con-
taining two condition-successor pairs and when started
with P0(3) produces the sequence of four strings: a,
P1(3) P0O(2); b, split(0.8) duplicate(8) reverse P1(2)
PO(1); ¢, split(0.8) duplicate(3) reverse split(0.8) du-
plicate(2) reverse loop(1) P1(1) parent(1) merge(1);
and d, split(0.8) duplicate(3) reverse split(0.8) dupli-
cate(2) reverse loop(1) {split(0.6) duplicate(0.4)} re-
verse parent(1) merge(1). This last is interpreted as:
split(0.8) duplicate(3) reverse split(0.8) duplicate(2)
reverse loop(1) split(0.6) duplicate(0.4) split(0.6) du-
plicate(0.4) reverse parent(1) merge(1), and the net-
work that it constructs is shown in figure 2.h.

2.5 EVOLUTIONARY ALGORITHM

The evolutionary algorithm used to evolve L-systems
is the same as [Hornby & Pollack, 2001]. The initial
population of L-systems is created by making random
production rules. Evolution then proceeds by itera-
tively selecting a collection of individuals with high
fitness for parents and using them to create a new pop-
ulation of individual L-systems by applying mutation
or recombination. Mutation creates a new individual
by copying the parent individual and making a small
change to it. Changes that can occur are: replacing
one command with another; perturbing the parameter
to a command by adding/subtracting a small value to
it; changing the parameter equation to a production;
adding/deleting a sequence of commands in a succes-
sor; or changing the condition equation. Recombina-
tion takes two individuals, pl and p2, as parents and
creates one child individual, ¢, by making it a copy of
pl and then inserting a small part of p2 into it. This is
done by replacing one successor of ¢ with a successor
of p2, inserting a sub-sequence of commands from a
successor in p2 into ¢, or replacing a sub-sequence of
commands in a successor of ¢ with a sub-sequence of
commands from a successor in p2.

3 EXPERIMENTAL RESULTS

In this section we present results in evolving 3D loco-
moting creatures using both oscillating joints as con-
trollers and using neural networks as controllers. To
evolve creatures that locomote we set their fitness to
be a function of the distance moved by the creature’s
center of mass less the distance ground points were
dragged along the ground — this penalty encourages
creatures to evolve stepping or rolling motions over
sliding motions.

1200
generative —+—
non-generative -—---—
1000
800
9]
3
< 600
400
200 P
B emmmmmm Xemmm === Kmmmmmmee x - [EE— 4
_temmee

generation

Figure 3: Generative vs. Non-generative Encodings

—— — —~

e

(a) (b)

Figure 4: Results with Non-generative Encoding

Initially we ran two sets of experiments to compare
a generative encoding against a non-generative encod-
ing. In these experiments we added the constraint that
creatures could not have a sequence of more than 4
bars in a row that was not part of a cycle as a repre-
sentative limit to physically plausible creatures while
not providing any shaping bias!. The evolutionary al-
gorithm was configured to run with a population of

Tn a true dynamics simulator actual torques on joints

would be calculated and then a constraint on the allowable
torque could be used.

(a) (b)

(a) (b)

(c) (d) (c) (d)

Figure 5: Results with Generative Encoding

100 individuals for 100 generations and morphologies
had an upper limit of 350 bars. The non-generative
encoding was allowed to use up to 10000 build com-
mands and the generative encoding used 2 parameters
and 15 production rules, with 2 condition-successor
pairs for each production rule, with each successor hav-
ing a maximum of 20 build commands. 10 trials were
run with each encoding type, and the average of the
fittest individual found at each generation is plotted
in the graph in figure 3. Two individuals evolved us-
ing the non-generative encoding are shown in figure 4
and four individuals evolved using the L-system as a
generative encoding are shown in figure 5. In addi-
tion to producing faster creatures, the L-system en-
coding produced creatures with greater self-similarity
and had more parts — the average number of bars in
the fittest creatures was 16 using the non-generative
encoding and 120 with the L-system encoding.

Other evolutionary runs using the L-system encoding
were made with different fitness functions and a higher
upper limit on the number of allowed bars. The indi-
viduals in figure 6 were evolved against a fitness func-
tion that rewarded for having closed loops in the mor-
phology — a is a sequence of rolling rectangles with 169
bars; b is an undulating serpent with 339 bars; ¢ is an
asymmetric rolling creature with 306 bars; and d is a
four-legged walking creature with 629 bars.

Figure 6: Other Oscillator Creatures

Next we ran experiments combining the neural-
network construction language from section 2.2 with
morphology construction language of section 2.1 to
evolve creatures with neural controllers. To encourage
networks with complex dynamics to evolve, individu-
als were rewarded for the average number of inputs to
hidden units and for the range in values of the output
units. The evolutionary algorithm was configured to
run with a population of 100 individuals for a maxi-
mum of 500 generations. Experiments were run using
20 production rules, 3 condition-successor pairs and 2
parameters for each production rule for which approx-
imately half the runs produced interesting creatures
Examples of evolved creatures are shown in figure 7:
a has 49 neurons and moves by first stretching out its
arms, then twisting its body as it closes up to move
sideways; b has 41 neurons and moves by falling over
each time it wraps up into a circle and unwraps; ¢ has
24 neurons and moves by using the two lower squares
as an arm to push it forward; d has 150 neurons and
moves by coiling up into a circle to roll; and e has 19
neurons and moves by using its tail to roll it along like
a wheel. The network of the creature in figure 7.f is
shown in figure 8. In addition to being fairly regular,
its linear sequence of outputs also corresponds to the
linear sequence of joints in its morphology. It moves
by twisting itself to roll sideways.

() (f)

Figure 7: Neural Network Controlled Creatures

4 DISCUSSION

As the number of parts in a creature increase, so does
the difficulty in hand-designing a controller for it. This
system for evolving POL-systems automatically pro-
duced creatures, and their controllers, with hundreds
of parts and varying degrees of regularity.

We also used the results of one evolutionary run as
the starting population for another run, the creature
in figure 6.b is the result of one run seeded with a previ-
ously evolved creature. This method of using multiple
runs of evolution is one way to use EAs to optimize
and explore the design space of the input creature or
to create creatures with similar locomotion styles. Al-
ternatively, a simple creature can be designed by hand
and the evolutionary system can improve upon it.

Figure 8: Evolved Neural Network

For this work we used parametric L-systems as a way
to increase complexity over basic L-systems. Other
types of L-systems that could have been used are prob-
abilistic L-systems and context sensitive L-systems
[Prusinkiewicz & Lindenmayer, 1990]. Probabilistic
production rules do not have a condition part, rather
they have multiple successors, each with a probabil-
ity that it will be used to replace the predecessor.
While good for generating a variety of similar struc-

tures, this system is non-deterministic — which makes
it unsuitable for developing structures that need to be
re-created the same each time. Another way in which
variation can be applied to an L-system is through the
addition of context. Context sensitive L-systems ex-
amine the characters to the left and right of the char-
acter to be rewritten to determine which successor to
replace it with. While this class of L-systems is deter-
ministic, not having parameters results in the inability
to take advantage of parametric terminals, such as the
oscillators whose parameter specifies the speed of os-
cillation. Using parameters also has the advantage of
allowing one production rule to be used to generate a
class of objects. In this way parameters are analogous
to the arguments of a function in a computer program
and the evolution of an L-system becomes like the evo-
lution of a computer program, as in genetic program-
ming [Koza, 1992].

5 CONCLUSION

An integrated encoding for generatively creating
both creature morphology and neural controller was
achieved by using evolutionary techniques to evolve
POL-systems. Using this system, the morphologies
and controllers were evolved for locomoting crea-
tures. Creatures evolved using the generative encod-
ing moved faster than creatures evolved using the non-
generative encoding. In comparison to related work,
these evolved creatures consisted of an order of magni-
tude more parts and had a higher degree of regularity
than [Sims, 1994, Komosinski & Rotaru-Varga, 2000,
Lipson & Pollack, 2000].

Acknowledgements

This research was supported in part by the De-
fense Advanced Research Projects Administration
(DARPA) Grant, DASG60-99-1-0004. The authors
would like to thank the members of the DEMO Lab:
A. Bucci, E. DeJong, S. Ficici, P. Funes, S. Levy,
H. Lipson, O. Melnik, S. Viswanathan and R. Wat-
son.

References

[Abelson & deSessa, 1982] Abelson, H. & deSessa,
A. A. (1982). Turtle Geometry. M.I.T. Press.

[Boers & Kuiper, 1992] Boers, Egbert J. W. &
Kuiper, Herman (1992). Biological metaphors and
the design of modular artificial neural networks.
Master’s thesis, Leidea University, the Netherlands.

[Gruau, 1994] Gruau, Frédéric (1994). Neural Net-
work Synthesis Using Cellular FEncoding and the
Genetic Algorithm. PhD thesis, Ecole Normale
Supérieure de Lyon.

[Hornby et al., 2001] Hornby, G. S., Lipson, H., &
Pollack, J. B. (2001). Evolution of generative
design systems for modular physical robots. In
Intl. Conf. on Robotics and Automation.

[Hornby & Pollack, 2001] Hornby, Gregory S. & Pol-
lack, Jordan B. (2001). The advantages of genera-
tive grammatical encodings for physical design. In
Congress on Evolutionary Computation.

[Kitano, 1990] Kitano, H. (1990). Designing neural
networks using genetic algorithms with graph gen-
eration system. Complex Systems, 4:461-476.

[Komosinski & Rotaru-Varga, 2000] Komosinski, M.
& Rotaru-Varga, A. (2000). From directed to open-
ended evolution in a complex simulation model. In
Bedau, McCaskill, Packard, & Rasmussen (Eds.),
Artificial Life 7, pp. 293-299.

[Koza, 1992] Koza, J. R. (1992). Genetic Program-
ming: on the programming of computers by means
of natural selection. MIT Press, Cambridge, Mass.

[Lindenmayer, 1968] Lindenmayer, A. (1968). Math-
ematical models for cellular interaction in develop-
ment. parts I and II. Journal of Theoretical Biology,
18:280-299 and 300-315.

[Lindenmayer, 1974] Lindenmayer, A. (1974). Adding
continuous components to L-Systems. In Rozenberg,
G. & Salomaa, A. (Eds.), L Systems, Lecture Notes
in Computer Science 15, pp. 53—68. Springer-Verlag.

[Lipson & Pollack, 2000] Lipson, H. & Pollack, J. B.
(2000). Automatic design and manufacture of
robotic lifeforms. Nature, 406:974-978.

[Luke & Spector, 1996] Luke, Sean & Spector, Lee
(1996). Evolving graphs and networks with edge
encoding: Preliminary report. In Koza, J. (Ed.),
Late-breaking Papers of Genetic Programming 96,
pp. 117-124. Stanford Bookstore.

[Prusinkiewicz & Lindenmayer, 1990]
Prusinkiewicz, P. & Lindenmayer, A. (1990). The
Algorithmic Beauty of Plants. Springer-Verlag.

[Sims, 1994] Sims, Karl (1994). Evolving Virtual
Creatures. In SIGGRAPH 94 Conference Proceed-
ings, Annual Conference Series, pp. 15-22.

