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Abstract

Virtual creatures play an increasingly important role in computer graphics as spe-
cial effects and background characters. The artificial evolution of such creatures
potentially offers some relief from the difficult and time consuming task of specify-
ing morphologies and behaviors. But, while artificial life techniques have been used
to create a variety of virtual creatures, previous work has not scaled beyond crea-
tures with 50 components and the most recent work has generated creatures that
are unnatural looking. Here we describe a system that uses Lindenmayer systems
(L-systems) as the encoding of an evolutionary algorithm (EA) for creating virtual
creatures. Creatures evolved by this system have hundreds of parts, and the use of
an L-system as the encoding results in creatures with a more natural look.
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Lindenmayer Systems (L-systems)

1 Introduction

As computers become more powerful it is increasingly our design ability, rather
than computing power, that limits the richness of virtual worlds. Evolutionary
algorithms (EAs), a technique inspired by biological evolution, have shown
much promise in automating the process of producing creatures for virtual
environments, yet the most recent work in this area, [16,20] has produced
ungainly creatures with less than 50 components. The asymmetries of these
creatures is a result of using a direct encoding, an explicit encoding with a one-
to-one mapping from genotypic encoding to creature-part. As direct encodings
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have no re-use, symmetries and regularities do not occur, except by chance,
and evolved structures tend to be unnatural looking.

In this we return to the spirit of [23], in which a graph structure was used as a
generative encoding for the creatures. A generative encoding is a developmen-
tal method for producing a structure using a set of grammatical re-writing
rules or a procedural process, not unlike a computer program with re-usable
sub-procedures. Designs produced by a generative encoding have fractal-like
self-similarities, giving them an organic look, and have been shown to have bet-
ter scaling properties than direct encodings [3,12]. Here we use Lindenmayer
Systems (L-systems) [18] as a more powerful, and general purpose, generative
encoding than that of [23] to achieve moving creatures with hundreds of parts
whose structure is more natural looking than [16,20].

More common than co-evolving morphology and controller has been work
evolving controllers for pre-specified morphologies. Control systems for these
works has included stimulus-response rules [21,25], neural controllers [9], and
genetic programs [8]. The controllers of the creatures in this work are oscil-
lator circuits; each actuated joint is controlled by an oscillator with its own
frequency and relative phase offset. To achieve controllers that are reactive
to the environment joints can be controlled by recurrent neural networks, as
with [23,16,20], by including neural-network construction commands into the
encoding language [13].

In the following sections we first outline the design space and describe the
components of our generative design system, then we present our results and
finally close with a discussion and conclusion of our work.

2 Methods

The system for producing moving creatures consists of an algorithm for opti-
mizing creature designs, an encoding to represent the creatures for the opti-
mization algorithm, and a method of constructing creatures from their encod-

ing.

Evolutionary algorithms are used as the optimization algorithm for producing
the virtual creatures. EAs are a class of stochastic search and optimization
techniques inspired by natural evolution, these include genetic algorithms
[10], evolutionary strategies (2|, genetic programming [17] and evolutionary
programming [6]. An EA maintains a population of candidate solutions from
which it performs search by iteratively replacing poor members of the popu-
lation with individuals generated by applying variation to good members of
the population.



L-systems, a set of grammatical rewriting rules developed to model the bio-
logical development of multi-cellular organism [18], are used as the encoding
for the EA. Analogous to the concurrent division of cells in multi-cellular
organisms, the rewriting rules of an L-system are applied in parallel to all
characters in a string. By iteratively applying the set of rewrite rules a com-
plex string is created from a succession of simpler ones. In this work we use
a set of construction commands as the characters for the L-system so that
the strings produced by the evolved L-system are a sequence of commands for
constructing a creature.

Once a string of construction commands is generated by an evolved L-system,
it is passed to the creature constructor for evaluation. The creature constructor
module follows the string of construction commands, building the creature
piece by piece. After building the creature, it is evaluated for how well it
moves and this score is passed back to the EA.

We now describe the method for constructing creatures, the L-system encoding
and the EA in more detail.

2.1 Creature Constructor

Creatures are composed of bars that are connected by either fixed or actuated
joints. The construction module builds creatures by processing a sequence
of construction commands that specify how, and where, to attach bars to
the existing design. This sequence of commands is based on the instruction
language for a LOGO-style turtle [1]. As the turtle moves it creates bars, and
commands in the language specify whether subsequent bars are to be attached
with a fixed or actuated joint.

The turtle command language is similar to the L-system languages for creating
plants [22]. Push and pop operators, ‘[’ and ‘]’, are used to store and retrieve
the current state — consisting of the current location, orientation, and relative
phase offset — to and from the stack. Turn left/right/up/down/clockwise/counter-
clockwise(n) rotate the turtle’s heading about the appropriate axis in units of
90°. To create bars for creatures, forward(n) moves the turtle forward in the
current direction, creating a bar if none exists or traversing to the end of the
existing bar and backward(n) goes back up the parent of the current bar. The
joint commands move the turtle forward and end with a joint of the specified
type which oscillates at a rate specified by the command’s argument. By speci-
fying the rate of oscillation and relative phase offset, a wide range of movement
patterns can be generated. Revolute-1(n) creates a joint which oscillates from
0° to 90° about the Z-axis with speed n, revolute-2(n) creates a joint which
oscillates from —45° to 45° about the Z-axis with speed n, twist-90(n) cre-



ates a joint which oscillates from 0° to 90° about the X-axis with speed n,
and twist-180(n) creates a joint which oscillates from —90° to 90° about the
X-axis with speed n. Combined with the rotation commands these allow ac-
tuated joints to be created that rotate about the primary axes. We also add
a new command type, block repetition. Command sequences enclosed by ‘{’
and ‘}’ are repeated a number of times specified by the brackets’ argument,
thus { forward(1) }(3) is interpreted as: forward(1) forward(1) forward(1).

(a) (b) (©)

Fig. 1. Building and simulating a 3D creature.

In figure 1 we show intermediate steps in the building of a creature as well
as part of its animation. The single bar in figure 1.a is built from the string,
[ left(1) forward(1) |, and the two bar structure in figure 1.b is built from, /
left(1) forward(1) ] [ right(1) forward(1) ]. The final creature is made from the
command sequence, [ left(1) forward(1) | [ right(1) forward(1) | revolute-1(1)
forward(1), and is shown in figure 1.c, where it is displayed part-way through
its movement cycle.

Once an L-system specification is executed, and the resulting creature is con-
structed, its behavior is evaluated. In this work, creatures are evaluated in a
quasi-dynamic simulator similar to that of [20]. As demonstrated in our pre-
vious 2D work [11], creatures designed in this simulator have the potential to
transfer to the real world.

2.2  Parametric 0L-Systems

The main reason for using L-systems as the encoding for the evolutionary sys-
tem is their ability to compactly describe more natural looking structures than
the asymmetric structures produced with direct encodings [4,7]. As previous
work evolving basic L-systems has tended to produce overly regular designs we
used parametric L-systems (POL-systems) [19] as a way to increase variation.

Formally, a POL-system is defined as an ordered quadruplet, G = (V, &, w,
P) where,



V is the alphabet of the system,
Y. is the set of formal parameters,

w € (V x R*)* is a nonempty parametric word called the axiom, and

PC(VxXE)xCE)x(VxEX))*is a finite set of productions.

The symbols : and — are used to separate the three components of a pro-
duction: the predecessor, the condition and the successor. For example, a pro-
duction with predecessor A(n0, nl), condition n1>5 and successor B(nl+1) ¢
D(n1+0.5, n0-2) is written as:

A(n0,nl) :nl >5 — B(nl+1)cD(nl1+40.5,n0—2)

A production matches a module in a parametric word iff the letter in the
module and the letter in the production predecessor are the same, the number
of actual parameters in the module is equal to the number of formal parameters
in the production predecessor, and the condition evaluates to true if the actual
parameter values are substituted for the formal parameters in the production.

For implementation reasons we add constraints to our POL-system. The con-
dition is restricted to be comparisons as to whether a production parameter
is greater than a constant value. Parameters to design commands are either
a constant value or a production parameter. Parameters to productions are
equations of the form: [ production parameter | constant | [ + | — | X
| \ ] [ production parameter | constant |.

2.8  FEvolutionary Algorithm

An evolutionary algorithm is used to evolve individual L-systems and the
initial calling parameters of the first production rule along with the maxi-
mum number of iteration updates to be performed. The initial population of
L-systems is created by making random production rules. Evolution then pro-
ceeds by iteratively selecting a collection of individuals with high fitness for
parents and using them to create a new population of individual L-systems
through mutation and recombination. As initialization, mutation and recom-
bination are dependent on the encoding we describe them in greater detail.

An initial L-system is created from a blank template of a fixed number of
production rules, each with a fixed number of condition-successor pairs. Con-
ditions are created by randomly picking a parameter and a constant value
to compare it against. Successor strings are created by stringing together se-
quences of randomly generated blocks of one to three characters, which may



be enclosed by push and pop symbols, ‘[” and ‘], or block replication symbols,
‘{” and ‘}’. Examples of initial blocks of characters are: a(2.0) b(3.0) c¢(4.0),
{ P2(n1+2.0,n1/3.0) d(3.0) }(2), and [ a(n0) J. After an L-system is created,
it is evaluated. L-systems that score below a preset threshold are discarded
and a new one is randomly created in its place. This way the initial population
consists of a variety of different solutions, each of which is a creature whose
fitness is above the preset threshold.

Mutation creates a new individual by copying the parent individual and mak-
ing a small change to it. First a production rule is selected at random from
one of the used production rules and then this rule is changed in some way.
Changes that can occur are: replacing one command with a random command;
perturbing the parameter of a command by adding/subtracting a small value
to it; changing the parameter equation to a production; adding/deleting a
block of commands in a successor; or changing the condition equation.

For example, if the production PO is selected to be mutated,

PO0(n0,n1) : n0 > 5.0 = { a(1.0) 5(2.0) }(nl) ¢(3.0)
n0 > 2.0 — d(4.0) [ P1(nl — 1.0,n0,/2.0) ]

some of the possible mutations are,
Mutate an argument:

P0O(n0,n1): n0 > 5.0 = { a(1.0) 5(2.0) }(nl) ¢(3.0)
n0 > 2.0 — d(4.0) [ P1(nl1 — 2.0,70/2.0) ]

Delete random character(s):
PO0O(n0,nl): n0 > 5.0 — { a(1.0) }(nl) ¢(3.0)
n0 > 2.0 — d(4.0) [ P1(n1 — 1.0,70/2.0) ]
Insert a random block of 1-3 character(s):
PO0O(n0,n1): n0 > 5.0 = { a(1.0) 5(2.0) }(nl) e(4.0) ¢(3.0)

n0 > 2.0 — d(4.0) [ P1(nl — 1.0,n0/2.0) ]

Recombination takes two individuals, pl and p2, as parents and creates one
child individual, ¢, by making it a copy of pl and then inserting a small part
of p2 into it. This is done by replacing one successor of ¢ with a successor of



p2, inserting a sub-sequence of commands from a successor in p2 into c, or
replacing a sub-sequence of commands in a successor of ¢ with a sub-sequence
of commands from a successor in p2.

For example if parent 1 has the following rule,

P3(n0,n1): n0 > 5.0 = { a(1.0) 5(2.0) }(nl) ¢(3.0)
n0 > 2.0 — d(4.0) [ P1(nl — 1.0,10,/2.0) |

and parent 2 has the following rule,

P3(n0,nl) : n1 > 3.0 = b(3.0) a(2.0) ¢(1.0)
n0 > 1.0 = P1(nl — 1.0,n1 — 2.0)

Then some of the possible results of a recombination on successor P3 are:

Replace an entire condition-successor pair:

P3(n0,n1) : n1 > 3.0 — b(3.0) a(2.0) c(1.0)
n0 > 2.0 — d(4.0) [ P1(nl - 1.0,10/2.0) ]

Replace just a successor:

P3(n0,n1) : n0 > 5.0 — { a(1.0) b(2.0) }(nl) ¢(3.0)
n0 > 2.0 — P1(nl1 — 1.0,n1 — 2.0)

Replace one block with another:

P3(n0,nl) : n0 > 5.0 = { a(1.0) 5(2.0) }(nl) ¢(3.0)
n0 > 2.0 — d(4.0) [ b(3.0) a(2.0) ]

3 Evolved Creatures

To evolve moving creatures we set their fitness to be a function of the dis-
tance moved by the creature’s center of mass. Stepping and rolling motions
were encouraged by applying a penalty proportional to the distance covered
by points that dragged along the ground. Robust locomotion strategies were



Fig. 2. A variety of evolved creatures: a, a rolling creature with 33 bars; b, a
bi-connected rolling chain with 59 bars; ¢, a sequence of rolling rectangles with
169 bars; d, an undulating serpent with 339 bars; e, a 5-segmented inch-worm with
414 bars; f, a flipping creature with 99 bars; g, an asymmetric rolling creature with
306 bars; h, a coiling snake-like creature with 342 bars; and i, a four-legged walking
creature with 629 bars.

encouraged by adding a random perturbation to joints not part of a cycle of
bars. As this joint noise affects how the creature moves, three evaluation trials
are made, each using different random noise, with the lowest score assigned
as the creature’s fitness.

The evolutionary algorithm was configured to run with a population of 100
individuals for a maximum of 500 generations. Experiments were run using
from 10 to 20 production rules, 2 to 4 condition-successor pairs and 1 to 3
parameters for production rules.



Of the several dozen evolutionary runs made, approximately half produced
interesting results. The most common form of movement for evolved creatures
was to roll along sideways, as done by the chains in figures 2.a, 2.b, 2.c and
2.g. The creature in 2.d moves like an undulating sea-serpent and, in a similar
way, the creature in figure 2.e moves like an inch-worm. Another common form
of locomotion, similar to rolling, is the flipping of the creature in figure 2.f.
Instead of performing a continuous rotation of its body, this creature repeat-
edly moves its center of mass outside its contact points and falls over. Two
of the larger creatures that evolved are the one in figure 2.h, which moves by
pushing a coil from front to back and then re-creating the coil at its front, and
the creature in figure 2.i which uses four legs in an awkward walk.

4 Discussion

For this work we used parametric L-systems as a way to increase complexity
over basic L-systems. Using parameters also has the advantage of allowing one
production rule to be used to generate a class of objects, such as by using the
parameter to specify the size of an attribute generated by the production rule
or number of times to perform a loop. In this way parameters are analogous
to the arguments of a function in a computer program and the evolution of
an L-system becomes like the evolution of a computer program, as in genetic
programming [17].

Two other types of L-systems that could have been used to achieve greater
complexity than basic L-systems are stochastic L-systems and context sensi-
tive L-systems [22]. Stochastic production rules have multiple successors, each
with a probability that it will be used to replace the predecessor. The ability
to use different successors to replace the same predecessor gives stochastic L-
systems the ability to generate a variety of similar structures with the same set
of rules, but because this is done non-deterministically this system is unsuit-
able for developing structures that need to be re-created the same each time.
Another way in which variation can be applied to an L-system is through the
addition of context. Context sensitive L-systems have conditions that exam-
ine the characters to the left and right of the character to be rewritten to
determine which successor to replace it with. While this class of L-systems
is deterministic, it is not as powerful a class of L-systems as are paramet-
ric L-systems [19] and not having parameters results in the inability to take
advantage of parametric terminals, such as the oscillators whose parameter
specifies the speed of oscillation.

In addition to the results presented here, this system can be modified to pro-
duce different styles of creatures or extended to other substrates. A different
style of creatures can be produced simply by changing the amount of rotation



performed by construction commands, such as the 60° system that was used
for our 2D work [11], or different creature parts can be added, such as linear
actuators to produce creatures of the style of [20]. Alternatively, this system
can be used to generate designs for other substrates by changing the language
of terminals and the construction module. Examples of L-systems evolved for
different substrates are architectural floor plans [5], neural-networks [15,13],
plants [14,24], and tables [12].

5 Conclusion

A system for creating virtual creatures was achieved by using evolutionary
techniques to evolve parametric Lindenmayer systems. Using this system mor-
phologies and controllers were evolved for moving creatures. The evolved crea-
tures consist of an order of magnitude more parts and a higher degree of regu-
larity than [23,16,20]. Already our creatures are capable of playing background
characters with insect-level behaviors for animations. As we move from simple
oscillator circuits to neural-controllers [13], which can sense and respond to
the virtual environment, we expect to develop realistic artificial life-forms able
to take a larger roll in future animations.
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