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ABSTRACT
While most hyper-heuristics search for a heuristic that is
later used to solve classes of problems, autoconstructive
evolution represents an alternative which simultaneously
searches both heuristic and solution space. In this study
we contrast autoconstructive evolution, in which
intergenerational variation is accomplished by the evolving
programs themselves, with a genetic programming system,
PushGP, to understand the dynamics of this hybrid
approach. A problem size scaling analysis of these genetic
programming techniques is performed on structural
problems. These problems involve fewer domain-specific
features than most model problems while maintaining core
features representative of program search. We use two such
problems, Order and Majority, to study autoconstructive
evolution in the Push programming language.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis

General Terms
Algorithms

Keywords
Autoconstruction, Structural problems, Order, Majority,
Push, PushGP

1. INTRODUCTION
Heuristics are “rules of thumb” that can improve the

search for solutions within a class of problems [23, 6].
Evolutionary computation has been used to evolve
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heuristics for several kinds of problems including path
functions for the traveling salesman problem [21] and bin
evaluation functions for bin packing problems [5]. These
heuristics are often employed within problem-solving
algorithms that are otherwise quite minimal; for example,
when solving the traveling salesman problem a simple loop
may be used to iteratively call a heuristic function to
choose the next node [21]. But evolutionary computation
systems themselves embody heuristics of several kinds; for
example, the variation operators used for mutation and
crossover can be considered heuristics. Just as evolutionary
computation can be used to evolve heuristics in other
domains, it can also be used to produce or refine its own
heuristics; methods for doing this are called
hyper-heuristics. In this study we investigate the scaling
properties of a particular hyper-heuristic, called
autoconstructive evolution, on structural problems.

Autoconstructive evolution is an evolutionary computa-
tion technique that encodes mechanisms for reproduction
and variation in the genomes of individual problem solvers.
We examine the capabilities of autoconstructive evolution
on two problems, Order and Majority, which are designed
to model representative properties of genetic programming
(GP) algorithms [11]. Order programs are scored based
upon their ordering of complimentary pairs of terminal in-
structions in a depth first traversal of the programs’ code.
Majority programs are scored based upon the relative quan-
tity of complimentary pairs of terminal instructions. The
essential properties of these problems that make them in-
teresting in the context of autoconstruction are: multiple
optima in the fitness landscape (Majority/Order), accumu-
lation of beneficial components (Majority), and eliminative
transformations (Order).

Many interesting problems have multiple optima, making
it important for general search methods to be able to han-
dle such problems. In addition to the shape of the fitness
landscape, the way the landscape is traversed is also impor-
tant. When traversing a program space the accumulation
of beneficial components is crucial for two reasons. Firstly,
for some problems the evolution of programs involves pro-
gressive refinement of sub-expressions (i.e. accumulating nu-
meric constants in symbolic regression and increasingly de-
scriptive boolean expressions for parity and multiplexers).
Secondly, programs that contain beneficial components may
serve to act as enhanced donors of code.



While the Majority problem serves as a model for the
accumulation of beneficial components, the Order problem
is based upon the idea of eliminative transformation. An
eliminative transformation is a change whereby the relative
ordering of a component may enable or disable the function-
ality of other components. For example, in the expression:
“if s1, then s2, else s3” when s1 evaluates to false, s2 is dis-
abled. By changing the relative ordering of s1, s2, and s3 a
different component may be disabled, such as in the case: “if
s2, then s1, else s3” when s2 evaluates to false; here s3 will
change from being enabled to being disabled even though
it was not moved by the reordering. Eliminative transfor-
mations commonly appear in the control flow of programs
as if, while, and other branching or looping statements. As
Goldberg and O’Reilly note, eliminative transformations are
related to program bloat, a common problem in GP.

Order and Majority model different, but important fea-
tures of general program search. The size of both problems
can be easily rescaled to allow for analysis with respect to
program size. While many model problems exist that intro-
duce features of search (i.e. largest common subsequence-
based fitness [12] and context-sensitivity [32]), we believe
that these model structural problems facilitate the study
of critical properties of variation in evolutionary algorithms
with a minimal set of features of program search.

The purpose of model GP problems is to provide insights
into evolutionary mechanics. In GP we use mutation and
crossover as evolutionary mechanisms which traverse the
search space by moving towards programs of increasing cor-
rectness, and/or that have a higher probability of leading to
programs of increasing correctness. Order and Majority can
provide insights into evolutionary mechanisms as well as pro-
gram structure assembly. The complexity of solving these
problems has been previously described [7], but when con-
sidering alternative approaches to variation the evolution-
ary dynamics are of particular interest. The performance
of a variation algorithm in solving a given structural prob-
lem may be indicative of its capabilities for solving problems
with properties similar to the respective model problem. By
modeling accumulative expressions, Majority provides in-
sight into how well a variation operator promotes beneficial
genetic material. On the other hand, Order can be used to
discern how well an algorithm varies programs to discover
beneficial eliminative transformations.

The representative properties of these two problems make
them ideal candidates for studying alternative approaches to
variation in program search. In this work our baseline GP
algorithm is PushGP, a stack-based GP system. In its full
extension it is also autoconstructive. That is, rather than re-
lying upon a pre-specified mechanism for genetic inheritance
and variation, each genome encodes its own reproduction
process. In particular we compare autoconstructive evolu-
tion, in which intergenerational variation is accomplished by
the evolving programs themselves, to PushGP, a standard
genetic programming system, on both Order and Majority
as the problems are scaled in size.

2. BACKGROUND
In GP, work on the adaptation of variation has largely fo-

cused on parametric adaptation and meta-populations. Self-
adaptive EAs, which historically started as meta-EAs [24]
with the rationale that parameters and search mechanisms
could themselves adapt, are related [31, 9, 2, 20, 10]. How-

ever, most research on adaptive EAs investigate the tuning
of population-level parameters, and work on self-adaptive
EAs generally investigates the tuning of individual-level pa-
rameters. A unique approach to self-adaptive EAs operating
at the component-level is presented in [1], where probabili-
ties of selection/variation are associated with nodes in a pro-
gram tree. When subtrees are swapped between programs
the respective probabilities are also swapped, thus the node
selection probabilities and candidate solution programs are
subjected to the same evolutionary pressures. Yet paramet-
ric adaptation focuses on techniques for tweaking parameters
that are used by human-coded variation operators.

Evolving variation programs, meta-GP, was introduced in
[29] where a population of variation operators is coevolved to
select subtrees for recombination. This work was expanded
in the context of graph-GP to introduce both a second meta-
level and the ability to perform mutations [16]. Both Teller
and Kantschik et al., demonstrate that meta-GP can out-
perform a traditional GP variation algorithm. Edmonds ex-
tended meta-GP from the evolution of node selectors to en-
tire tree-manipulation programs [8]. Unlike node selection-
based meta-GP, Edmonds’ implementation does not surpass
traditional GP in performance. Recently we have shown
that zipper-based tree-manipulation languages are capable
of expressing variation operators that outperform traditional
mutation and crossover operators in a meta-GP system [14].
These meta-GP implementations are more closely related to
adaptive EAs than self-adaptive EAs, where evolutionary
history informs future variations at the population-scale.

Autoconstruction unifies meta-GP and self-adaptation
by integrating the reproductive mechanism into the genome
[28]. The incorporation of reproduction into the genomes
of problem solvers was first presented in [18], where a “sea”
of computer programs incrementally self-improve to solve
simple boolean problems. This integration of reproduction
into the genome makes autoconstructive evolution both an
individual- and component-based meta-evolutionary
technique. This is different than adaptive EAs which vary
population-level parameters, and most self-adaptive EAs
which generally vary parameters at the individual level.
While the autoconstructive approach is in some respects
both elegant and analogous to biology it leads to a number
of complexities. Problem-specific instructions intermingle
with variation instructions within individual programs. In
the majority of cases this requires programs to utilize
multiple data types (e.g. solving symbolic regression
requires numeric instructions for solving the regression
problem and code manipulation instructions for producing
offspring). Programs are also expected to evolve both a
beneficial variation operator and a solution, which could
arguably require more evolutionary time than simply
evolving a solution. Up to this point autoconstruction has
not been found to outperform a traditional GP algorithm
[25, 13], but evidence from biology provides reasons to
believe that in the long run, when autoconstructive
processes are better understood, these systems will
outperform methods based on hand-designed reproductive
methods.

A practical way to study the capabilities of autoconstruc-
tion is to use structural problems which posess many of fea-
tures of typical GP problems, yet are simple, quickly solv-
able, and scalable. In this paper we show how a zipper-based



language for autoconstruction performs relative to PushGP
on large structural problems.

3. AUTOCONSTRUCTION AS A
HYPER-HEURISTIC

Hyper-heuristics can be described as “the process of us-
ing (meta-)heuristics to choose (meta-)heuristics to solve the
problem in hand” [4]. Although autoconstruction is not
like most hyper-heuristics due to the dualism of function
encoded in evolved individuals (variation and solution), it
clearly falls in the realm of hyper-heuristics. In fact, auto-
constructive evolution is a hyper-heuristic in two ways: re-
productive mechanisms are evolved which are then used to
vary problem solutions, and reproductive mechanisms vary
the reproductive mechanisms. Yet one key difference be-
tween autoconstruction and most hyper-heuristics is the en-
tanglement of the heuristic and the problem solution within
individual programs. In most cases this leads to the solution
and heuristic being inseparable. However, if reusability is a
desirable characteristic for a particular class of problems,
then it is often the case that the individual program may be
used as an independent heuristic by treating the program as
a variation operator.

4. GENETIC PROGRAMMING WITH THE
PUSH LANGUAGE

Push is a stack-based programming language specifically
designed for evolutionary computation [26]. Instructions,
such as arithmetic, program flow, and code manipulation
instructions, take (pop) input from and output (push) to a
set of typed, global stacks. Types include integers, floating-
point numbers, booleans, and code. Among the properties of
Push that make it useful for evolutionary computation is the
lack of any syntactic restrictions, aside from the balancing of
parentheses, on program structure. This is possible because
the values are passed among instructions by means of global
data stacks, and it is therefore not necessary for the flow of
function arguments and return values to be indicated in a
program’s syntactic structure. When necessary inputs for an
instruction are not available on the stacks, the instruction
simply has no effect and execution continues (the instruction
acts as a “NOOP”). As opposed to reiterating a description
of the language we present an example and direct the reader
to the detailed descriptions available in [28, 26, 27].

We begin by showing an example of simple arithmetic:
(7 INTEGER.+ 3 INTEGER.* 0.5 INTEGER.DUP
INTEGER.+). As Push programs are evaluated left to
right we begin with 7, which is pushed onto the integer stack.
INTEGER.+ is evaluated, but because there is only one
value on the integer stack INTEGER.+ has no effect. 3
is then pushed onto the integer stack. INTEGER.* pops
3 then 7 and pushes 21. 0.5 is pushed onto the float stack.
The instruction INTEGER.DUP takes the top item on
the integer stack and pushes a copy of it onto the integer
stack, so now there are two copies of 21 on the integer stack.
Finally, INTEGER.+ pops both copies of 21 and pushes
42. The result of evaluating this expression is 0.5 and 42
on top of the float and integer stacks, respectively.

Autoconstruction was one of the primary considerations
in the design of Push. The code type was introduced to al-
low for simple manipulation of programs and has been the
primary datatype involved in autoconstruction studies thus

Figure 1: A diagram of a zipper.

far [28, 25]. Evaluating autoconstructive programs for prob-
lem fitness is performed in the same manner as evaluating
a Push program in any other context and irrelevant out-
puts are ignored. The code type implements a large num-
ber of instructions, many of which are inspired by Common
Lisp. This diverse autoconstructive vocabulary has led to a
number of interesting solutions presented in the previously
mentioned studies. However, the combinatorics of evolving
programs are exponentially unfavorable with respect to the
number of instructions, even with Push’s evolution-friendly
design.

5. ZIPPER-BASED
AUTOCONSTRUCTION

The autoconstructive instruction set used in this research
is based upon zippers. Zippers are functional data structures
that represent locations within trees and allow for simple
tree traversal with directional movement and editing com-
mands [15]. A diagram of a zipper is shown in Figure 1.
Zippers have been incorporated into Push as a first-class
data type with their own stack. In addition to the tradi-
tional zipper movements, instructions are added that allow
for multi-zipper manipulation, random movements, and ran-
dom subtree generation. Although a larger number of zip-
per instructions have been added to Push, the subset used
in this study are shown in Table 1. The simplicity and small
number of these tree-based instructions facilitates autocon-
struction.

We use a deliberately constrained approach to autocon-
struction. In previous work we explored the effect of ac-
cess restrictions in autoconstruction by considering applying
programs to themselves, randomly selected individuals, and
themselves in conjunction with other individuals [13]. This
led to the identification of two forms of autoconstruction
of particular interest. The first is autoconstructive muta-
tion (AM) where individuals are composed with other ran-
domly selected individuals. The second is autoconstructive
crossover where individuals are composed with themselves



Instruction Description
ZIP.DOWN Move the top zipper deeper in the tree,

if possible.
ZIP.LEFT Move the top zipper to the left sibling,

if possible.
ZIP.RIGHT Move the top zipper to the right sibling,

if possible.
ZIP.RAND Replace the subtree rooted at the top

zipper’s location with a random sub-
tree.

ZIP.ROOT Move the top zipper to the root of the
tree.

ZIP.RLOC Move the top zipper to a random loca-
tion within the subtree pointed to by
the top zipper.

ZIP.RRLOC Move the top zipper to a random loca-
tion in the tree.

ZIP.SWAP Pop two zippers and push them back
onto the stack in reverse order.

ZIP.SSUB Swap about the subtrees pointed to by
the top two zippers.

INTEGER.ERC An ephemeral random integer in:
[−size,−1] ∪ [1, size] where size is the
respective problem size.

EXEC.NOOP A placeholder instruction used for
“padding” that has no effect.

Table 1: Instruction set used in this study.

and other randomly selected individuals (AX). In AM, a
child f ′ is created by parents f and g by the expression
f ′ = f(g), and in AX, f ′ = f(f, g). In practice a program f
performing AM on a program g is evaluated with program g
as the top item on the zipper stack. After evaluation the top
item on the zipper stack is popped off and returned as the
child program, f ′. A program f performing AX on program
g is evaluated with f and then g pushed onto the zipper
stack, and again the top item on the zipper stack is popped
off and returned as the child program, f ′. If f does not
contain instructions that modify the top item on the zipper
stack, then the resulting child will be a clone of the input.
This problem of cloning is prevalent in autoconstruction, es-
pecially in early generations. The most common resolution
to this problem is the enforcement of “no cloning” rules.

Here we present an example of zipper-based
autoconstructive crossover where f = g = ((ZIP.DOWN
ZIP.RIGHT ZIP.DOWN ZIP.RIGHT) (12 18
INTEGER.+) ZIP.SWAP ZIP.DOWN ZIP.RIGHT
ZIP.SSWAP)). The Push interpreter is initialized with f
and then g pushed onto the zipper stack. The first part of
the program to be evaluated, (ZIP.DOWN ZIP.RIGHT
ZIP.DOWN), moves the top zipper to 18. ZIP.SWAP
swaps the top two items on the zipper stack, and now the
top zipper points to the root of g. The instructions
ZIP.DOWN ZIP.RIGHT move the top zipper to the
subtree (12 18 INTEGER.+). ZIP.SSWAP then
swaps about the subtrees pointed to by the top two
zippers. The root of the resulting item on top of the zipper
stack is ((ZIP.DOWN ZIP.RIGHT ZIP.DOWN
ZIP.RIGHT) (12 (12 18 INTEGER.+)
INTEGER.+) ZIP.SWAP ZIP.DOWN ZIP.RIGHT
ZIP.SSWAP)), which evaluates to 42. This program
would then be treated as the candidate child program and
tested for acceptance criteria, such as appropriateness of
size and difference in fitness relative to its parent programs
(see Section 8).

6. ORDER
The fitness of a program for Order, r(f), is computed as

∀zi ∈ [1, s], ifM(zi, f) < M(−zi, f) vi = 1

otherwise vi = 0

r(f) =
∑
i

vi (1)

where s is the problem size and M(z, f) is the number of ele-
ments preceding the first occurrence of z within program f in
depth-first order. An example program is (ZIP.RRLOC (3
(5) (16 (10) ZIP.RAND 10) -8) -6 (-8 (ZIP.RIGHT
13)) (-1 ((-11 (-6 13 (9)) -15) 8 (12) 8 -15) 10)
(ZIP.RLOC) (ZIP.ROOT) 12). This autoconstructive
mutation program has fitness of 7 and produces a child us-
ing standard subtree replacement mutation (which is imple-
mented by the first two zipper instructions, with the subse-
quent zipper instructions having no effect).

7. MAJORITY
The fitness of a program for Majority, r(f), is computed

as

∀zi ∈ [1, s], ifN(zi, f) ≥ N(−zi, f) ∧N(zi, f) > 0 vi = 1

otherwise vi = 0

r(f) =
∑
i

vi (2)

where s is the problem size and N(z, f) is the number of
instances of integer z in program f . The example program
presented in the previous section on Order has a Majority
fitness of 8.

8. EXPERIMENTS
The system used for the following experiments is based

upon the PushGP evolutionary algorithm (EA) with a
number of modifications to the variation algorithm. The
PushGP EA is similar to most EAs that are used in GP;
for a detailed explanation of EAs in GP see [22, 3, 19].
Most of the differences between PushGP and GP relate to
representation-specific operations, such as node selection
and code generation. A detailed explanation of the
PushGP EA is presented in [26]. We briefly explain our
modified variation algorithm.

First, the parent population is copied into the child pop-
ulation. For all individuals in this child population a can-
didate replacement program is produced with the following
algorithm: a uniform random number between [0, 1] is gener-
ated and used to choose the variation mechanism according
to the parameters of the respective experiment. Parents are
selected with tournament selection from the parent popula-
tion. The tournament size is 7 in all cases. The variation
mechanism is applied to the parents to create a candidate
program. The candidate program is accepted if: its size is
less than the size limit, all elements of its error vector are
less than or equal to those of its parents, and its code is not
exactly the same as its parents’ code. If the candidate pro-
gram is accepted, then it replaces an individual in the child
population. If the candidate program is rejected, then the
individual in the child population, which was copied from
the parent population, remains.

In these scaling experiments we evaluate problem sizes:
32, 48, 64, 80, 96, and 112. Each problem size is evaluated
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Figure 2: Results on the Order problem.

for 100 runs with a population size of 500 and a generation
limit of 501. The limit of maximum number of points in a
program is 10 times the problem size. During the creation of
a new program, a desired program size is randomly selected
from the range [0, limit] and a program of this size is gener-
ated according to the algorithm specified in [28]. Computa-
tional effort (CE) is computed as the number of individuals
expected to be evaluated for a 99% chance of success [17].
Mean best fitness (MBF) is computed as the average fitness
of the best individual at the end of all runs for a given set of
parameters. For all parameters 10% replication is used. In
these runs GP uses 45% crossover and 45% mutation; AX
uses 90% autoconstructive crossover; and AX/AM uses
45% autoconstructive crossover and 45% autoconstructive
mutation. Note that the criteria for acceptance/rejection
of candidate programs are applied to runs for all parameter
sets.

9. RESULTS
The results for the Order problem are presented in Figure

2. For all scales of Order the ranking of performance is: GP,
AX, AX/AM. In terms of the CE, Figure 2a, AX/AM de-
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Figure 3: Results on the Majority problem.

grades in performance significantly as problem size increases,
yet AX stays nearly parallel to GP. For MBF, Figure 2b,
AX/AM is again shown to perform worse as problem scale
increases while both AX and GP have much less degreda-
tion in performance with respect to problem scale. This is
also true in terms of the % of successful runs, Figure 2c. As
a whole we can see that AM seems to decrease performance
on larger instances of the Order problem, and AX on its
own has comparable scaling properties to GP. The upward
displacement of AX relative to GP is expected given that
autoconstructive individuals are required to evolve both a
reproductive mechanism and a problem solution.

The results for the Majority problem are presented in
Figure 3. While the ranking of performance is the same
as the Order problem for larger scales, we can see that for
problem sizes smaller than 64, AX/AM outperforms AX
in terms of MBF and % success. In terms of CE we also
see a similar reduction of difference between AX and GP
to the Order results, but to a lesser extent. This suggests
that the unary zipper instructions (zipper movements and
ZIP.RAND) are superior to recombinatory zipper opera-
tors for small Majority problems. This is expected due to



the formulation of the Majority problem. For small prob-
lem sizes randomly generated code has a high probability
of containing each possible instruction. Given that Major-
ity is a model of the accumulation of beneficial components,
regardless of ordering, we can expect this increased proba-
bility of inserting beneficial components favors reproductive
strategies that involve the insertion of random code.

Figures 4a and 4b show the time until reproductive com-
petence is reached. Reproductive competence is defined as
the first generation in which at least 10% of the candidate
programs produced during the variation phase of the EA
are accepted. It is clear that for both problems GP, on
average, reaches reproductive competence before either AX
or AX/AM. The number of generations until reproductive
competence for GP is achieved may seem long to some. This
delay is a result of the acceptance criteria that are employed
by the EA. The difference between the time to achieve re-
productive competence for GP and AX is relatively small,
which indicates that zipper-based autoconstruction is capa-
ble of achieving reproductive competence rapidly. On the
other hand, the time until AX/AM reaches reproductive
competence is essentially double that of AX. Since the prob-
abilities of AX v. AM in the AX/AM configuration are
equal, we suggest that AM may not be an appropriate vari-
ation operator for either the Order or Majority problems.
On the other hand, AX becomes reproductively competent
within approximately 5 generations of GP for both prob-
lems. Examinations of the change in the acceptance rate of
candidate programs over evolutionary time (not presented)
show similar rates for AX and GP while the poor perfor-
mance of AX/AM obscures the comparison.

In Figures 5a and 5b, we show a histogram of the % of
successful runs for the Order and Majority problems as the
problem size increases. The trends are similar in both fig-
ures; GP consistently outperforms both autoconstructive
operators for the 3 smallest problem sizes for both Order
and Majority. For larger problem sizes GP also does better,
yet a modest number of runs of AX converge at early gen-
erations. Although there are insufficient early convergences
of AX to claim significance, they do hint at the promise of
autoconstructive evolution as a hyper-heuristic for the co-
evolution of reproductive heuristics and problem solutions.

10. DISCUSSION
Our results show a number of interesting properties for

autoconstructive evolution which have not been documented
previously, such as the benefit of recombinatory variation,
favorable scaling in computational effort with respect to
problem size, and rapid evolution of reproductive compe-
tence. However, there is no indication that autoconstruc-
tive evolution would outperform GP for larger problem sizes.
There are a number of constraints that have been imposed
in this minimalist implementation of autoconstruction which
may be limiting the potential of autoconstructive evolution.

A minimal autoconstructive instruction set was
used. While the zipper-based instruction set is quite
powerful, it may be enhanced with additional instructions.
For example, conditional zipper instructions could allow for
the evolution of size-based variation operators or
pattern-matching in subtrees. In previous studies of
autoconstructive evolution very large instruction sets were
used (often almost all instructions in the Push language).
These studies led to the evolution of interesting

30 40 50 60 70 80 90 100 110
10

20

30

40

50

60

70

problem size

a
v
g

. 
g

e
n

. 
o

f 
re

p
ro

d
u

c
ti
v
e

 c
o

m
p

e
te

n
c
e

 

 

GP

AX

AX/AM

(a) Scaling of reproductive competence on Order.
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(b) Scaling of reproductive competence on Majority.

Figure 4: Average number of generations until 10% of candi-
date programs are accepted for both the Order and Majority
problems. Error bars indicate standard error. Fewer gener-
ations is better.

reproductive mechanisms; however, the performance of
autoconstruction in these cases was significantly worse
than what one would expect from traditional GP. A study
that begins with a minimal instruction set, such as our
zipper-based instruction set, and incrementally adds
additional instructions may prove to be fruitful.

Stringent acceptance criteria were imposed. The
acceptance criteria for candidate programs may not be opti-
mal. While experience and guesswork brought us to impose
both the “no cloning” rule and neutral-or-better fitness im-
provement criteria, it is not clear whether these criteria are
ideal, sufficient, or limiting. The use of hereditary analy-
sis, such as measures of conservation in reproductive mech-
anism, may allow for greater flexibility in the reproductive
mechanisms that can evolve.

A clear issue that arose in this study is autoconstruc-
tion takes longer to get started. While the time un-
til reproductive competence emerges under autoconstructive
evolution is fast when compared to previous work on auto-
construction, it is still slower than GP. This suggests that
autoconstructive evolution may simply require more evolu-
tionary time. The reproductive competence was measured
as the first generation where 10% of the candidate programs
are accepted for the next generation. Although we also in-
spected the change in acceptance rates over evolutionary
time, a rigorous study of the causes of candidate program
rejection and how it might be prevented could improve the
efficiency of autoconstructive variation.

A more subtle issue that can be seen in Figures 2c, 3c,
and 5 is the apparent bimodal behavior of autoconstruc-
tion where one mode represents runs that succeed and the
other mode represents runs that are likely to fail. An exam-
ple of this can be clearly seen by comparing Figure 2c and
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(a) Generations of convergence for Order.
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(b) Generations of convergence for Majority.

Figure 5: Histogram of % runs converged at a given generation for both the Order and Majority problems. A higher count
on the left means faster convergence.

the histogram of generation of convergence in Figure 5a for
problem size 32, where the majority of AX runs converge
before generation 200 yet more than 5% of runs do not con-
verge before the generation limit is reached. This behavior
suggests that autoconstructive evolution may benefit from
terminating some runs prematurely; if runs that are likely
to fail can be detected. One approach to detecting such runs
is through the use of order statistics. A preliminary study
on the use of order statistics in GP suggests that they may
be a useful tool for measuring how effectively a given system
explores a program space [30].

11. CONCLUSION
In this study we present two methods for performing auto-

constructive evolution, and have shown that autoconstruc-
tive evolution can exhibit favorable scaling properties with
respect to problem size on structural problems. Further-
more, as a hyper-heuristic autoconstruction is a particu-
larly novel methodology because it functions as a hyper-
heuristic at two levels. Evolved reproduction heuristics are
both applied to problem solutions and to themselves. We
have shown that autoconstructive crossover has a similar
scaling of performance to genetic programming in the Push

language. This is likely due to similar costs of evolving a
reproductive mechanism for any problem size. The similar
scaling of performance for autoconstructive crossover and
GP lends credence to the hypothesis that, in the long-term,
it may be the coevolution of reproductive mechanism and
problem solution that leads to accelerated gains which out-
perform hand-designed algorithms.
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