Zipper-based Meta-Genetic Programming

Kyle I. Harrington
Jordan B. Pollack

Brandeis University, Waltham, MA 02453
kyleh@cs.brandeis.edu

August 16, 2011

Abstract

We present a zipper-based instruction set for constructing genetic pro-
gramming variation operators. We study the effects of such variation op-
erators on the lawnmower problem. Operators in this language possess the
ability to outperform standard mutation and crossover in terms of both
decreasing the average population error as well as the best population
error. Furthermore, the expression of standard mutation and crossover in
this language is trivial, allowing evolution to re-discover these operators
when necessary. We conclude by using these operators in a meta-genetic
programming context, showing that it is possible for zipper-based meta-
genetic programming to expedite evolutionary search.

1 Introduction

The first instance of the meta-evolution of programs was presented in (Schmid-
huber, 1987). However, the algorithm is presented as a thought experiment
as opposed to a usable tool. The suggestion of a pure meta-evolutionary sys-
tem composed of a hierarchy of meta-populations also served to dissuade the
algorithm in practice; as Schmidhuber notes,one should expect that as the or-
der of meta-evolution increases, the rate of adaptation of the highest order
meta-operator should slow. This cost may be one of the reasons that meta-
evolutionary techniques have received minimal attention.

Since this initial proposal of meta-evolution, few researchers have chosen
to pursue the study of meta-evolutionary techniques; of those, a smaller frac-
tion have demonstrated improvements over classical techniques. The major-
ity of these improvements are outside of the field of genetic programming (i.e.
evolutionary programming (EP) (Fogel et al., 1991), genetic algorithms (GA)
(Grefenstette, 1986; Tuson, 1995), etc.). A complete review of these meta-
evolutionary techniques is out of the scope of this work, we will focus on a
few meta-evolutionary techniques that has been applied to tree-based GP. For

the interested reader we note some meta-evolutionary approaches that operate
on alternative representations (Teller, 1996; Kantschik et al., 1999; Baum and
Durdanovic, 1998; MacCallum, 2003; ONeill and Brabazon, 2005).

Some of the initial promising results of adaptive evolution within GP were
heavily inspired by EP. In brief, meta-evolutionary programming associates per-
turbation values with components. These perturbation values are used when
varying components. This idea of associating perturbation values with compo-
nents was incorporated into GP by associating probabilities of mutation and
crossover with nodes (Angeline, 1995). This form of self-adaptation allows pro-
grams to adapt the probability of variation at specific points within the program
tree. One of the appealing features of this algorithm is that the parameters of
variation are unique to individuals, a property we will see is not always present
in meta-evolutionary algorithms.

The first application of meta-GP to a standard GP population was presented
by Edmonds (2001). The meta-population is composed of tree manipulating
operators. Both the solution and meta populations are subject to the general
framework of evolutionary algorithms, where solutions receive fitness based on
their ability to solve problems while variation operators receive fitness based
upon their ability to vary solutions. Although a number of nuances are required
in order to improve the meta-GP algorithm, the ultimate version of the algo-
rithm is shown to perform comparably to traditional GP. In closing, Edmonds
discusses methods for evolving the population of variation operators. The most
appealing of these suggestions is the recursive application of variation opera-
tors through a bucket-brigade algorithm (Holland, 1985). However, the bucket-
brigade algorithm is another form of the the meta-meta-...problem presented
in the original meta-evolution algorithm. Though Edmonds demonstrated that
meta-evolution can work even with one meta-level, the technique does not allow
for individualistic self-adaptations like those presented in (Angeline, 1995).

A novel alternative to the previously mentioned meta-evolutionary algo-
rithms is autoconstruction (Spector and Robinson, 2002). In autoconstruc-
tion, individuals are responsible for their own reproduction and variation. The
meta-meta-. . . problem is remedied by intermingling the code of variation with
problem specific code. Although the appeal of variation operators customized
to each individual is clear, autoconstruction has yet to be demonstrated to
be comparable to traditional GP. Furthermore in recent work revisiting auto-
construction the size of the instruction set has led to a combinatoric explosion
(Spector, 2010). The vast majority of instructions considered in this revisitation
were included to assist in autoconstructive mechanisms. We pose the question
of whether this design decision sacrifices the evolvability of the system.

Before describing our study, we highlight a number of theoretical points
about variation and evolvability of importance to meta-GP. Fitness functions
are mappings of individual programs onto real numbers. This mapping is often
many-to-one, meaning that many individuals may be seen as “equivalent” with
respect to the fitness function. However, as is noted in (Altenberg, 1994) the
evolvability of these “equivalent” individuals may be quite different. The idea
of evolvability is of crucial importance in a discussion of variation.

Instruction Function

Z1P.UP Move Z; up 1 node if there will be a left neighbor
ZIP.DOWN Move Z1 down 1 node
ZIP.LEFT Move Z; left 1 node if there will be a left neighbor

ZIP.RIGHT Move Z; right 1 node

ZIP1.ROOT Move Z; to the root

ZIP2.ROOT Move Z5 to the root

ZIP.RAND Replace the subtree at Z; with a random subtree
ZIP.RLOC Move Z; to a random location below it
ZIP.RRLOC Move Z; to a random location anywhere in the tree
ZIP.SWAP Rename 77 to Z5 and vice versa

ZIP.SWAP.ST | Replace the subtree at Z; with the subtree at Z> and
vice versa

ZIP1.REP.ST | Replace the subtree at Z; with the subtree at Zo
ZIP2.REP.ST | Replace the subtree at Z; with the subtree at Z;

Table 1: Instruction set for variation operators.

While the simple study we present does not account for properties such
as constructional selection, the transmission function (Altenberg and Feldman,
1987) is central to any study of variation. The transmission function is the
function which maps sets of individuals to new individuals; that is, the trans-
mission function describes the distribution of children that a variation operator
can construct from a set of parents. Within GP, the mathematical understand-
ing of the transmission functions for a given variation operator with respect
to a population draws upon ideas from GP schema theory (Poli, 2001). Thus
far, GP schema theory is limited to a subset of possible variation operators, and
each operator generally requires a separate mathematical formulation. As an al-
ternative to mathematically extending GP schema theory, we present empirical
results for the effect of variation operators on a real GP population.

We design a set of variation operators that allow for the concise represen-
tation of a wide range of variation operations. We continue to implement a
meta-GP system in order to evaluate the performance of these operators in the
wild. Our variation operators are expressed in a simple instruction set that
not only draws on observations of optimality in (Edmonds, 2001), but are also
designed such that they may be introduced into alternative meta-evolutionary
frameworks such as autoconstruction and meta-GP.

2 Evolutionary System

Our framework contains two instruction sets: one for variation and the other
for specific problems. Both types of instructions are based on LISP-style S-
expressions, while the framework is written in the Lisp-like language, Clojure
(Hickey, 2008). The problem-specific instructions are presented later. We now

introduce the instruction set for variation operators.

As the representation of our problems are traditional tree based genetic pro-
grams our variation operators necessitate the ability to manipulate trees. We
choose to use zippers (Huet and France, 1997). A zipper is a simple idea drawn
from functional programming which represents a location within a tree. Lists of
neighboring, parent, and child subtrees relative to the current location are main-
tained in a single data structure, along with the tree itself. Much of the impetus
for selecting this representation for variation instructions is drawn from the ob-
servations of (Edmonds, 2001) about the performance of certain instructions
in meta-GP, such as tree traversal and the utility of root-access functions. In
addition to the traditional zipper functions we add GP-type instructions. These
include random movements within trees and subtrees, replacement of random
subtrees, and the swapping of subtrees.

Recombination is a highly desirable feature within GP. We design all varia-
tion instructions to take two inputs and produce two outputs. Unary operators
simply ignore the second argument, passing it unchanged. This uniformity al-
lows us to easily compose instructions. We refer to the mathematical form of
composition (i.e. f(g), f is composed with g). The result of composing a se-
quence of variation operators is a single function that, when given two program
trees, produces two program trees. When applying a zipper function to two
trees, Z1 and Zs, we can write a function

Y(Z1,22) = (21, Z3) (1)

where Z{ and Zj are the trees as modified by Y. In all the presented experiments
the input zippers are initially located at the root, and to produce a child we use
the first of the two resulting trees. The full instruction set is shown in table 1.

The creation of standard GP variation operators with these instructions is
easy. Note that the compositional nature of the instruction set leads to reading
the variation operators from right to left, where the rightmost operators are
applied first. A standard mutation operator can be represented as (ZIP.RAND
ZIP.RRLOC). In order to apply the operator two individuals are selected
from the population, Z; and Z;. ZIP.RRLOC moves Z; to a random location
within its tree and leaves Z5 unchanged. ZIP.RAND then replaces the subtree
at Z; with a random subtree, and again Z5 is unchanged. The modified root
of Z; is then returned as the child program. Crossover can be expressed as
(ZIP.SWAP.ST ZIP.RRLOC ZIP.SWAP ZIP.RRLOC). The evaluation
of this operator begins similarly with Z; being moved to a random location.
ZIP.SWAP then renames the two zippers, with Z5 becoming Z; and vice
versa. Z; (formerly Z3) is moved to a random location by ZIP.RRLOC. The
subtrees rooted at Z; and Z, are then swapped by ZIP.SWAP.ST. The tree
rooted at Zp is then returned as the child. We now continue to describe the
results of applying other operators to real GP populations.

2.1 Problem: Lawnmower

The “lawnmower” problem was initially presented by (Dickmanns et al., 1987)
as the problem of a robot traversing as many squares of a checkerboard as
possible. Optimal solutions in this initial study were facilitated by the use
of loops, a primitive form of modularity. In later work by Koza (1994) the
problem was used as a tool for studying the performance of automatically defined
functions (ADFs), a functional form of modularity in GP. Since these studies,
the problem has been used to study modularity in a variety of GP systems (i.e.
(Spector and Luke, 1996; Bruce, 1997; Walker and Miller, 2006; Spector et al.,
2011)). Tt has been observed within GAs that crossover facilitates solutions to
modular problems ((Mills and Watson, 2007)). Although such a claim does not
appear to have been made within GP, (Kashtan and Alon, 2005) have observed
that structural modularity can emerge in response to dynamic environments.
Is it possible that recombinatory variation operators also facilitate stationary
modular problems within GP?

3 Distribution of Operator Performance

80-

~
S

+ All operators + All operators
¢ Mutation @ Mutation
© Crossover © Crossover

@
=]

N @ &
S & S o

=)

change in best error of child population

change in avg. error of child population
)

=)

-40 L ' ' L) ' i '
0 10 20 30 40 50 60 [¢] 10 20 30 40 50 60 70

best error parent population average error parent population
(a) Best error (b) Average error

Figure 1: Performance of variation operators on the 8 by 8 lawnmower problem.

The goal of this initial portion of the study is to explore the capability of our
zipper-based instruction set for performing variations during the evolution of a
population of programs. However, it will not always true that an operator will
be able to improve an initial random population, nor will it always be true that
an operator will be able to improve a population later in evolution. Our primary
goal is to understand how a variation operator can change a given population.
This leads us to use a significantly modified evolutionary algorithm.

For each trial we initialize a fixed set of variation operators and a random
GP population. The previously described mutation and crossover operators are
ensured to be contained within every set of variation operators. This was done

Parent pop-
ulation er-
ror

Variation operator

55 (ZIP2.REP.ST ZIP.SWAP.ST ZIP.RIGHT ZIP.DOWN ZIP.DOWN
ZIP.DOWN ZIP2.REP.ST ZIP.SWAP.ST ZIP.UP ZIP2.REP.ST
ZIP1.ROOT ZIP1.REP.ST ZIP.DOWN ZIP2.ROOT)

Simplified | (ZIP2.REP.ST ZIP.SWAP.ST ZIP.RIGHT ZIP.DOWN ZIP.DOWN
ZIP.DOWN ZIP2.REP.ST ZIP1.ROOT ZIP1.REP.ST ZIP.DOWN)

45 (ZIPRRLOC ZIP.LEFT ZIP2.REP.ST ZIP1.ROOT ZIP2.ROOT
ZIP1.REP.ST ZIP2ROOT ZIP.RIGHT ZIP1.REP.ST ZIP.RLOC
ZIP.SWAP.ST ZIP.LEFT)

Simplified | (ZIP2.REP.ST ZIPL.ROOT ZIPL.REP.ST ZIP.RIGHT
ZIP1.REP.ST ZIP.RLOC ZIP.SWAP.ST)

31 (ZIPLROOT ZIP2.ROOT ZIP.RLOC ZIP1.REP.ST ZIP.DOWN
ZIP.SWAP ZIP1.ROOT ZIP.SWAP ZIP.DOWN)

Simplified | (ZIPL.REP.ST ZIP.DOWN ZIP.DOWN)

25 (ZIPRIGHT ZIP.RAND ZIPRLOC ZIPLEFT ZIP.SWAP.ST
ZIP.RRLOC ZIP.RRLOC ZIP.RLOC ZIP.RAND ZIP.UP)

Simplified | (ZIPRAND ZIP.RLOC ZIP.LEFT ZIP.SWAP.ST ZIP.RRLOC
ZIP.RAND)

21 (ZIP2.ROOT ZIP.RAND ZIPL.REP.ST ZIP.RRLOC ZIP.LEFT
ZIP.LEFT ZIP2.ROOT ZIP.SWAP.ST ZIP.RLOC ZIP.RIGHT)

Simplified | (ZIP.RAND ZIP.RRLOC ZIP.SWAP.ST ZIP.RLOC)

15 (ZIP1.REP.ST ZIP.DOWN ZIP.RAND ZIP.RRLOC ZIP1.REP.ST)

Simplified | (ZIPL.REP.ST ZIP.DOWN ZIP.RAND ZIP.RRLOC ZIP1.REP.ST)

1 (ZIPRIGHT ZIP.DOWN ZIP.RRLOC ZIP.RIGHT ZIP.SWAP.ST
ZIPRRLOC ZIP.DOWN ZIP1LROOT ZIP.RLOC ZIP.SWAP
ZIP2.ROOT ZIP.RAND)

Simplified | (ZIP.SWAP.ST ZIP.RRLOC ZIP.SWAP ZIP.RAND)

Table 2: Selected best variation operators from the lawnmower problem and
their simplified versions.

Step 0 Step 4: ZIP2.REPST Step 7: ZIPDOWN Step 9: ZIP.SWAP.ST

2 L

O 00 O

Step 1: ZIPDOWN

Figure 2: Best variation operator for lawnmower parent population of error 55:
(ZIP2.REP.ST ZIP.SWAP.ST ZIP.RIGHT ZIP.DOWN ZIP.DOWN
ZIP.DOWN ZIP2.REP.ST ZIP1.ROOT ZIP1.REP.ST ZIP.DOWN).
Shading indicates source tree. Bold outline indicates current zipper location.
Dashed outline indicates phantom nodes.

both for the sake of comparison as well as to ensure that the population would
continue to improve, although as we will see, the latter justification may very
well have been unfounded. Every variation operator generates an equal-sized
child population with each pair of parents chosen by fitness proportional selec-
tion. We compute statistics for the performance of each variation operator by
measuring fitness changes between the parent and its respective child popula-
tion. All child populations, as well as the parent population, are then combined
into a single significantly larger population. The new parent population is gen-
erated by taking the best individuals from the merged populations. The process
is then repeated until an individual of maximal fitness is present in the parent
population. The goal of this algorithm is not to increase the optimality of evolu-
tionary search, but to ensure that statistics are computed for variation operators
with populations of a variety of fitness values.

Small population sizes are used maximize the range of error levels for parent
populations. Initial populations are composed of full trees of depth 4. The
maximum length of any variation operator is 15. Randomly generated operators
are ensured to contain at least one tree manipulation operator. In total, 500
trials of the lawnmower problem are performed.

We examine the 8 by 8 lawnmower problem with turn and move limits of
100. The results for this problem are shown in figure 1. Figure la shows the
change in best (lowest) error of parent population to child population for vari-
ation operators. The best operators are below the X-axis, while the operators
along the upper diagonal bring the child population to maximal error. It is
clear that crossover and mutation are useful operators as they generally pro-
duce some of the best individuals; however, there are a number of alternative
operators that outperform both of these traditional operators. The results for
changes in average population error (Figure 1b) tell a slightly different story.

There are always variation operators that outperform mutation and crossover.
Furthermore, as the average population error approaches 0 both standard GP
operators appear to lose their ability to improve the average population error.
Some alternative operators possess the remarkable ability to reduce the average
population error to nearly 0.

Given the ease of expressing traditional GP operators with this instruction
set, one might suspect that the better variation operators are simply refor-
mulated versions of crossover and mutation where additional code that has
no effect on produced child obfuscates their detection. For example, such
instances might perform crossover, and apply a number of movement opera-
tors without performing additional variations. Although such reformulations
do occur, that is not the predominant case. In table 2 we show some of the
best performing variation operators on the lawnmower problem. The perfor-
mance of these variation operators can be found in figure la by finding the
parent population error on the x-axis and then examining the minimum point
on the y-axis (with the exception of parent population error of 7, where one
of three operators was chosen). Henceforth, operators will be referred to by
their respective parent population errors. Operator 55 can be simplified to
(ZIP2.REP.ST ZIP.SWAP.ST ZIP.RIGHT ZIP.DOWN ZIP.DOWN
ZIP.DOWN ZIP2.REP.ST ZIP1.ROOT ZIP1.REP.ST ZIP.DOWN)
by removing instructions that have no effect. A graphical representation of the
effect of this operator is shown in figure 2. This operator begins by inserting
Z5 as a subtree of Z7, followed by inserting a duplicate of itself deep into itself.
This operator duplicates the left deep version of itself, effectively duplicating its
left “module.” Operator 4 can be simplified to (ZIP.SWAP.ST ZIP.RRLOC
ZIP.SWAP ZIP.RAND) which is an alternative representation of mutation.
Operator 15 possesses a particularly unique form of variation. A random sub-
tree is inserted into a candidate solution, and a copy of of the same candidate
solution is then inserted in place of the left branch of the random tree. Many
other operators have been tested in this study, a few of which have been selected
for their ability to make significant jumps in maximum fitness (Table 2).

While investigating these interesting alternative operators we have avoided
highlighting the large number of variation operators that increase error. The
upper portion of both plots in figure 1 contain a large number of such variation
operators. These are the operators of worry when performing meta-GP. Is the
risk of injecting these detrimental variation operators worth the potential gains?
We answer this question in the following section.

4 Meta-GP

We use the simplest evolutionary algorithm possible in our comparison. As
opposed to Koza who uses overselection with fitness proportional selection to
expedite his search for solutions of the lawnmower problem, we use only fitness
proportional selection. This leads us to study the 8x6 lawnmower problem with
move and turn limits of 75. Both the GP and meta-GP systems use configu-

Il computational effort| Il num successes
[mean best fitness [mean of top 10% successes

>
oy
om

I
=
N
=3
S

-
a
=]

3

S

0.5

fitness

o
<]

computational effort
N
a
S

number of successful trials
=
o
)
generations

o

MGP GP-45/45 GP-80/10 0 MGP GP-45/45 GP-80/10

o

(a) Computational effort and mean best (b) Total and fastest successes.
fitness.

Figure 3: Comparison of meta-GP and GP performance.

ration parameters matching (Koza, 1994) with the exceptions: no overselection
is used, variation parameters (which are discussed later), generation limit is
151 generations, and population size is 500. The meta-population, composed
of zipper-based variation operators, uses the mean over a sliding window (size
3) of winner-take-all (WTA) scores. The WTA score is the fitness of the best
program produced by an operator within a given generation. During the re-
production phase of the meta-population, variation operators inherit the score
history of the primary parent operator. 5 forms of variation are used on the
meta-population: 80% one-point crossover, 3.3% mutation, 3.3% shuffle (com-
plete permutation), 3.3% deletion, and 10% reproduction. Three constraints are
imposed on variation operators: the maximum size is 20, the minimum size is
2, and they must contain at least 1 recombinatory instruction that modifies the
first zipper. The limit on minimum size is imposed to resolve the introduction
of (ZIP.RAND) which may achieve a high fitness, but is not a “productive”
variation operator. The constraint on recombinatory instructions that modify
Z1 reduces the number of invalid programs that are considered. ZIP.RAND
is not included within this constraint because in practice this often leads to
programs that simplify to (ZIP.RAND). In the meta-GP study, we remove
the instructions ZIP.UP and ZIP2.ROOT which preliminary experiments re-
vealed to be used infrequently. These results are generated from 200 trials of
each parameter configuration.

We compare 3 configurations: first, standard GP with 80% crossover, 10%
mutation, and 10% reproduction, second, standard GP with 45% crossover, 45%
mutation, and 10% reproduction, and third, meta-GP. The meta-population is
composed of 50 variation operators, and is subject to the previously described
selection and variation processes.

The results of the meta-GP/GP comparative trials are presented in figure 3.
We begin with figure 3a. In terms of computational effort (for details see Koza
(1990)) meta-GP lags behind standard GP. However, this is not surprising as
meta-GP must first sort through a random population of variation operators,
many of which have no meaning. We note that the mean best fitness (MBF)

— MetaGP
GP-80/10

-~ 50 —GP-45/45
c

3

8

o 40T

[2}

®

Q

[&]

2 30

[0

=

S 20¢

£

3

O

10+ L
VaurZ nd
0 1 1 1 1 1 1 |

35 40 45 50 55 60 65 70 75
generation

Figure 4: Comparison of GP’s and Meta-GP’s initial cumulative successes with
respect to generation.

in figure 3a shows meta-GP nearly on par with GP. The relative similarity of
MBF values support the notion that meta-GP has an initial cost to overcome
but recovers, because the terminal fitness values are generally near maximal
fitness. In figures 3b and ?? we can see the benefits of meta-GP more clearly.
While there are fewer successes in total for meta-GP, the top performing meta-
GP runs are faster than the top performing GP runs. The value of shorter runs
with larger population sizes under certain circumstances has been quantified
Luke (2001). This supports the observations seen in the distribution of opera-
tor performance which suggest that there are alternative operators capable of
outperforming traditional GP operators.

5 Discussion

We present an analysis of zipper-based variation operators and show that they
can outperform traditional GP operators. In using these operators in a meta-
GP context we discover a “Babe Ruth” type phenomenon. When meta-GP
performs well, it outperforms GP. Yet in many cases there is an initial cost that
meta-GP must overcome. We can explain some of the difficulties of meta-GP
by noting that meta-GP must deal with an initial set of operators of unknown
quality, while GP starts out with hand-picked operators known to perform well.

Genetic programming has often referred to as a dark art. When using GP

10

to solve problems the practicioner must be aware of not only the properties of
function sets but the effects of numerous parameters. Not only does the manual
selection of parameters introduce bias, but the operators themselves (crossover
and mutation) introduce bias. We have shown that it is possible to avoid this
bias at the level of the problem solving population by using a population of
zipper-based variation operators.

The utility of our language is clear in these results. Although the perfor-
mance of crossover and mutation are consistent, alternative operators possess
the ability to make larger jumps in the solution space at various stages of a
population’s evolution. This consistent performance of crossover and mutation
supports the historical decisions to use these operators within the GP commu-
nity. However, we note that the performance of alternative variation operators
can easily double that of crossover and mutation. In particular the ability to
both improve average population error throughout the entire evolution as well
as make large jumps in best fitness suggest that it may be time to move beyond
the traditional variation operator bias of genetic programming.

In light of our observations that there are many alternative variation oper-
ators capable of outperforming traditional crossover and mutation, we suspect
that further study should be able to improve the consistency of meta-GP’s per-
formance. Seeding the meta-population with standard GP operators may allow
meta-GP to overcome the initial cost of discovering useful variation operators
de nouveau; however, we encourage focus on techniques for variation operator
selection and ranking as the primary approach for improving meta-GP.

We have presented and measured the performance of a language for the con-
cise representation of variation operators. By studying the lawnmower problem
we have seen that some of the best operators function by increasing the struc-
tural modularity of programs. Emperical evidence of structural modularity
(repeated patterns) can be seen in Langdon and Banzhaf (2008). The ability of
our zipper-based language to naturally facilitate structurally modular solutions
is primarily in the form of recombinatory modularity. That is, code from other
individuals in the population, and occasionally the same individual, is incor-
porated as sub-programs within new individuals. The advantage of evolution
via recombination is often explained as a response to changing environments
(Maynard Smith and Szathméry, 1992). One of the most important ideas from
coevolutionary theory is that the evolving population itself is a dynamic envi-
ronment. As such we suggest that meta-evolution and coevolution are not only
linked via the coevolving variation operators, but even through the coevolution
amongst members the problem solving population.

Future work should explore the selection and ranking mechanisms of the
meta- population, as well as the coevolutionary consequences of meta-GP'.

L Additional work explores zipper-based autoconstructive evolution (Harrington et al.,
2011).

11

6 Acknowledgements

The authors thank Lee Spector for encouraging the use of zippers, Emma Tosch
for many insightful discussions, the DEMO lab, the Hampshire College CI lab,
and Carolyn Earnest. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0757452. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the National Science
Foundation.

References

Altenberg, L. (1994). The evolution of evolvability in genetic programming. Advances in
genetic programming, pages 47-74.

Altenberg, L. and Feldman, M. (1987). Selection, generalized transmission and the evolution
of modifier genes. I. The reduction principle. Genetics, 117(3):559.

Angeline, P. (1995). Two self-adaptive crossover operations for genetic programming. In
Advances in genetic programming 2, pages 89-110.

Baum, E. and Durdanovic, I. (1998). Toward code evolution by artificial economies. In Late
Breaking Papers at the Genetic Programming, pages 22-25.

Bruce, W. (1997). The lawnmower problem revisited: Stack-based genetic programming and
automatically defined functions. In Genetic Programming 1997: Proceedings of the Second
Annual Conference, pages 52—57.

Dickmanns, D., Schmidhuber, J., and Winklhofer, A. (1987). Der genetische algorithmus: Eine
implementierung in prolog. Fortgeschrittenenpraktikum, Institut f ur Informatik, Lehrstuhl
Prof. Radig, Technische Universit at M unchen.

Edmonds, B. (2001). Meta-genetic programming: Co-evolving the operators of variation. Turk
J. Elec. Engin.

Fogel, D., Fogel, L., and Atmar, J. (1991). Meta-evolutionary programming. In Signals,
Systems and Computers, 1991. 1991 Conference Record of the Twenty-Fifth Asilomar
Conference on, pages 540-545.

Grefenstette, J. (1986). Optimization of control parameters for genetic algorithms. Systems,
Man and Cybernetics, IEEE Transactions on, 16(1):122-128.

Harrington, K., Tosch, E., Spector, L., and Pollack, J. (2011). Compositional Autoconstructive
Dynamics. In Proc. of the 8th Intl. Conf. on Complex Systems.

Hickey, R. (2008). The Clojure programming language. In Proc. of the 2008 Symp. on
Dynamic Languages, page 1.

Holland, J. (1985). Properties of the bucket brigade. In Proceedings of the 1st International
Conference on Genetic Algorithms, pages 1-7.

Huet, G. and France, I. (1997). Functional pearl: The zipper. In J. Functional Programming,
pages 549-554.

Kantschik, W., Dittrich, P., Brameier, M., and Banzhaf, W. (1999). Meta-evolution in graph
GP. Genetic Programming, pages 652-652.

12

Kashtan, N. and Alon, U. (2005). Spontaneous evolution of modularity and network mo-
tifs. Proceedings of the National Academy of Sciences of the United States of America,
102(39):13773.

Koza, J. (1990). Genetic programming: A paradigm for genetically breeding populations of
computer programs to solve problems. Technical report, Stanford University Computer
Science Department.

Koza, J. (1994). Genetic programming II: automatic discovery of reusable programs.

Langdon, W. and Banzhaf, W. (2008). Repeated patterns in genetic programming. Natural
Computing, 7(4):589-613.

Luke, S. (2001). When short runs beat long runs. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO-2001), pages 74-80.

MacCallum, R. (2003). Introducing a Perl genetic programming system-and can meta-
evolution solve the bloat problem? Genetic Programming, pages 17-49.

Maynard Smith, J. and Szathmary, E. (1992). The origin of life.

Mills, R. and Watson, R. (2007). Variable discrimination of crossover versus mutation using
parameterized modular structure. In Proceedings of the 9th annual conference on Genetic
and evolutionary computation, pages 1312-1319.

ONeill, M. and Brabazon, A. (2005). mGGA: The meta-grammar genetic algorithm. Genetic
Programming, pages 311-320.

Poli, R. (2001). Exact schema theory for genetic programming and variable-length ge-
netic algorithms with one-point crossover. Genetic Programming and Evolvable Machines,
2(2):123-163.

Schmidhuber, J. (1987). Ewolutionary principles in self-referential learning. (On learning
how to learn: The meta-meta-... hook.). PhD thesis, Institut fiir Informatik, Technische
Universitat Miinchen.

Spector, L. (2010). Towards Practical Autoconstructive Evolution: Self-Evolution of Problem-
Solving Genetic Programming Systems. Genetic Programming Theory and Practice VIII,
pages 17-33.

Spector, L. and Luke, S. (1996). Cultural transmission of information in genetic programming.
In Proceedings of the First Annual Conference on Genetic Programming, pages 209—-214.

Spector, L., Martin, B., Harrington, K., and Helmuth, T. (2011). Tag-based modules in genetic
programming. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2011).

Spector, L. and Robinson, A. (2002). Genetic programming and autoconstructive evolution
with the push programming language. Genetic Programming and Evolvable Machines,
3(1):7-40.

Teller, A. (1996). Evolving programmers: The co-evolution of intelligent recombination oper-
ators. In Advances in genetic programming 2, pages 45—68.

Tuson, A. (1995). Adapting operator probabilities in genetic algorithms. Master’s thesis,
Department of Artificial Intelligence, Univeristy of Edinburgh.

Walker, J. and Miller, J. (2006). Embedded cartesian genetic programming and the lawnmower

and hierarchical-if-and-only-if problems. In Proceedings of the 8th annual conference on
Genetic and evolutionary computation, pages 911-918.

13

