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Abstract

One of the centraldifficulties of coevolutionary
methodsarisesfrom ‘intransitive superiority’— in
a two-player game,for example the fact that A
beatsB, and B beatsC, doesnot exclude the
possibility that C beatsA. Suchcyclic superiority
in a coevolutionarysubstrateis hypothesizedo
causecyclesin the dynamicsof the population
such that it ‘chasesits own tail' - traveling
through some part of strategyspacemore than
once despite apparentimprovementwith each
step. It is often difficult to know whether an
applicationdomaincontainssuchdifficulties and
to verify this hypothesign the failure of a given
coevolutionarysetup. In this paperwe wish to
elucidatesomeof the issuesand conceptsin an
abstract domain where the dynamics of
coevolution can be studiedsimply and directly.
We define three simple ‘number games’ that
illustrate intransitive superiority and resultant
oscillatory dynamics, as well as some other
relevantconcepts.Theseinclude the distinction
betweena player’s percéved performanceand
performancewith respectto an externalmetric,
and the significanceof strategieswith a multi-
dimensionahature.These features alone can also
cause oscillatory behavior and coevolutionary
failure.

Keywords: Coevolution,intransitive superiority,multiple
dimensions, coevolutionary failure.

1 INTRODUCTION

Coevolution has become increasingly popular in
Evolutionary Algorithms research(e.g. Hillis 1992, Sims
1994, Juille 1996, Miller & CIiff 1994). The basicidea
behindthe approactseens intuitive enough- ratherthan
evolve individuals againsta fixed objective metric, we
engage individuals in the task of improving their
performanceagainstother evolving individuals. One of
the most unequivocalbenefits of this approachcomes

from the fact that for many machinelearningdomainsa
suitable objective metric of performanceis simply not

available. Examples include the coevolution of pursuit and

evasion behaviors (Miller and CIiff 1994, Reynolds
1994), and competitivemanipulationof physial objects
(Sims1994). Apart from this primary benefitof providing

sometarget for performance,coevolutionis commonly
understoodo have severalother benefits.The following

list is not a comprehensiveaccount of coevolution’s
supposedenefits— rather we have selectedthoseideas
for which we will be ableto illustraterelatedissuesn our

experiments- but, theseideascover someof thosemost
commonin the coevolutionliterature. We use examples
from the domainof chessbut the conceptsapply equally

to any taskthat can be describedusing performancewith

respect to an opponent:

a) Providing a target that is ‘hittable’gradient.

If any two novice chessplayersplay against,say, a
Grand Master then both will lose and their
performancewill be indistinguishable.But if the
novicesplay againsteachotherthe superiorityof one
with respectto the other will be revealed. By
engagingplayersin the mutual pressure to outperform
oneanothercoevolution providesadaptivegradients
that might otherwisebe hardto engineer.Pollack &
Blair (1996) provide an examplewhere ‘self-play’
provides a gradient for learning.

b) A target that is relevantfocusing.

If we haveour two novicesplay againsta (fixed) set
of other chessplayersof various abilities then the

numberof gamesheywin might be different,andwe

may selectthe better.But how are we to devisethis

set of opponents? A random set may not be

representativef all chesglayers.Any givensetmay
fail to test certain aspectsof play. By using other

evolving playersasopponentsoevolutionmay focus
adaptatioron thoseaspect®f a taskthathavenot yet

been optimized. Exampleswhere one ‘species’ is

usedto provide a focusedtestsetfor anotherspecies
include Hillis (1992), and Juille (1996).

¢) A moving target- openendedness.
Even if we could find a representativdixed set of
opponentghat provideda gradientfrom novice play
throughto masterlevel, any fixed set will have an



upper limit. Using coevolutionthere is always the
potentialto be a better player than the best player
found so far, andwhenfound sucha playerprovides
the newtargetto beat.Openendednesss often cited
as a benefit of coevolution, e.g. (Ficici 1998)

However, althoughthesenotionsare common,and seem
intuitive enough, they are not very well defined.
Moreover, there is increasingawarenessjn this same

communityof researcherghatcoevolution can sometimes

introduceas manyproblemsasit solves.In thelist below
we describeinformally some of the ways in which a
coevolvingtargetfor performancemight not be hittable,
relevant, or moving in the right direction:

a) Loss of gradient.

Suppose an evolving population of opponents
becomesoo good — we may find ourselveswith an
‘unhittable’ targetonce more. For example, perhaps
evasionis very mucheasierthan pursuit,andnoneof
the evaderscan be caught.In this casewe lose the
gradientinformation and players may drift without
improvement.

b) Focusing on the wrong things.
The ability to focus on an opponent’sweaknesscan
provide an easy way to win. This may produce
degeneratlayersthat overspecializeon opponents

weaknesses, and fail to learn a task in a general way.

c) ‘Relativism’.

When opponentsco-adapt, and describea task for

oneanotherwe supposehattheywill 'leapfrog’ one
anotherin stepsof increasing performance. But,Afs

performancds definedby B, andB’s performancds

defined by A, then the adaptive system is

disconnected from any absolute measure of

performanceTwo good playersget the samescore
against each other, as do two bad players. So,

supposing variation is equally likely to take the
standardof play down as up (perhapsmore likely),

whatis to ensurethat thesemoving targetswill move
theway we want them to? Such relativismaynenable
ways for the playersto ‘subvert’ the game we as
researcherfiad in mind, and may lead to mediocre
players that never improve.

Problemssuchas thesemay be involved in someof the
failuresin the literature,but it is very difficult to be sure.
Identifying the causeof a failure is complicatedby the
fact thatit is very difficult to separatehe dynamicsof the
coevolutionarysetup from the details of the application
domain,be it backgammontobotics,pursuitandevasion,
or whatever.Thus, the benefits and the problemswith
coevolution continueto be a bit vague and ill -defined;
often going no further than the level of descriptionwe
have given above,and relying on metaphordike ‘arms
race’ and ‘collusion’.

Some work has addressedissuesin coevolution and
relativism in the abstract, which enables particular
underlying conceptsto be illustrated and investigated
(MaynardSmith 1982, Cliff & Miller 1995, Kauffman

1993).In this style, we introducein this papera minimal
substrate in which @volutionary concepts, dynamics, and
problems can be investigated - in particular, the

importance of intransitive superiority. Specifically, we

evolve scalar values and vectors under various
coevolutionary setups. This substrate enables us to

illustrate someimportantconceptghat may be underlying

the problems we introduced above. Our experiments
provide concreteexampledor eachof the ideaswe have
discussedandassistusin gainingsomedefining concepts
that may be useful in diagnosing coevolutiaitures.

Thefollowing sectionsareorganizedas follows: Section 2
introducessomeof the conceptswe seeas centralto the
issueswe describedabove, and describesthe minimal
substrate we use for our investigations. Section 3
describesother aspectsof our coevolutionary setup.
Section 4 describesexperimentsthat each illustrate a
different potentialcauseof failure in coevolution.Section
5 concludes.

2 A MINIMAL SUBSTRATE

In this sectionwe introducethe minimal substratehatwe
will use in our experiments.In the processwe will
describesomeof the conceptghatwe seeasimportantfor
understanding the issues involved in coevolution.

2.1 SCALARS

We commenceby consideringthe coevolutionof scalar
values. For example, we could evolve integers using
coevolutionarytechniquesto find high values. In this
domainwe know that the taskis trivial andthat evolving
integers is easy, thus any problems we have using
coevolutionary techniquesare a productof coevolution.
Although it may seemtoo trivial to be of usewe will see
that there are severalphenomenghat can be illustrated
with its help.

We assertthat the goal of the evolutionaryprocessis to

maximize, a, the value being evolved. Clearly, if we
evolveintegervaluesusinga fithessfunction, f(a)=a, then
the problemis trivial. However,we will investigatewhat
happenswhen we coevolvethesevaluesusing a fithess
function, f(a,S), that returnsa value for one number,a,

with respect to a setof othernumbersS. Sis a sample of

individuals aganst which a will be tested. For the
purposef our experimentave will usef(a,S) thatcounts
the number of members 8fthat are less thaa

f(a,S)= iscore(a, S) leq.1

wherescore(a,b)=1 if a>b, 0 otherwise.

In this way we may evolve the scalarvalues asif they
were playing a ‘greaterthan’ game,ratherthan evolving
them against an objective fitness function.

Clearly, if S werethe completesetof possiblevaluesin
the domainof a, thenour coevolutionarysetup would be



the sameasthetrivial evolutionarycase But naturally,for
our purposes S will consist of other coevolving
individuals. In somecasesthesewill be drawn from the
samepopulationandmay thereforebe geneticallyrelated.
In other cases,they will be drawn from a separate
coevolving population.We will seethatthe effectsof this
choice can be significant.

2.2 OBJECTIVE FITNESS, AND SUBJECTIVE

FITNESS

In evolutionaryalgorithmsthe fitnessof anindividual is
given by a 'fitnessfunction' or 'objective function’ - this
providessomemeasureof the individual'sperformanceor
quality with respectto the task at hand.In coevolution,
thereis still a fitnessfunction, e.g. Equationl - but the
valueit returnsis no longerobjective, it is subjectto the
samplechosenTo makethedistinction clear,we will call
the metric that we as researcherseekto optimize the
objective fitness, and we will call the metric of
performanceas perceivedby the co-evolving individual
the subjective fitness.*

We assertedbovethatour objectivefitnesswasf(a)=a. It
seemsfairly likely that anything adapting under our
‘greater than’ game will become maximized, as we
intended but this is not necessarilyso. Considermakinga
judgment:which of a andb is to be preferredAwherea
and b are any two individuals). With respectto our
objective metric, the preferredindividual is whicheveris
largerin value.They maybe equallypreferred only if they
areequalin value.Let us denotethis objectivepreference
relation as P,p(a,b). In the coevolutionay game,the one
that will be preferredwill be whichevergetsthe highest
value when playedin the ‘greaterthan’ gameagainstS.
This is its subjective fitness. If f(a,S,) is greaterthan
f(b,S,) (accordingto Equationl) thena is preferred.Let
us write the coevolutionarypreferenceas Psy,(a,b), then
we have statedthat P x{a,b)=Poy(f(a,S), f(b,S;)). Notice
that we do not assumehat a andb are evaluatedagainst
the sameS. And it should be clear that we may get a
different preferencedependingon how we chooseS, and
S.

Many of the problemswe encounteiin coevolutioncanbe
described as arising from the separation between a
player's performanceas they perceive it, from their
performance with respectto an external metric. A
mismatch of preferace relations from objective and
subjective metrics, i.e. Psyp{a,b) # Poy(a,b), will occur
dependingon the choiceof S. Clearlyif anychoiceof Sis
possiblethenwe canreversethe preferencerelationof a
andb. For example supposea =4 andb=5, so Py,(a ,b)
returnsb. If we chooseS={1,2,3} and S={6,7,8} then

! Notice that neitherof thesecorrepond to the Darwinian meaningof
fitness relating to the number of viable offspring. Even in regular

f(a,S)=3, and f(b,S)=0, so Pyy{a,b)=a. The subjective
and objective preferences give opposite answers.

Evenif S is the samefor both a and b we can get an
erroneougesult. Consider,5.=5={1,2,3}. Both a andb
scorethe sameaseachotherbecausehey win againstall
opponents Alternatively, we can chooseS so that they
lose againstall opponents.So, Psy{a,b)="draw”. This
correspondsto the ‘loss of gradient problem’ we
describedn the introduction.

To besure,in a coevolutionarysetup, the compositionof
Sis not arbitrary.But, we mustbe awarethateventhough
the choice of a coevolutionary game may not seem
problematic, we have already disconnectedfrom the
objectivemeasureof performanceWe will seethateven
our simple ‘greaterthan’ gamecan causeproblemseven
in a quite normal coevolutionarysetup. Whereasjn an
applied coevolution,the absenceof an objective metric
can preventus from examiningwhat is really happeing,
here we are able to illustrate these concepts clearly
becausewe have accessto both the subjective and
objective fitnesses.

2.3 MULTIPLE DIMENSIONS

The second feature of our minimal substrateis the

introductionof additionaldimensiongo the definition of

an individual. That is, we may representindividuals by

pairs of scalars,or vectors.For simplicity, let us discuss
pairs, and call the two dimensionsx andy. We will let

eachdimensionrepresent different aspectof a player’s
abilities. It is important to realize that we cannot
necessarilyreducemultiple dimensionsto a single scalar
valuethatwill represent player’squality. We cannotlet

the fitness of a player be representedy someweighted
sum of its componentdimensions,for example.This is

becausehe value of the weighting for an aspectof play

may dependon who the opponents; for oneopponentx

may be more important than y, for anotheropponent
maybeonly y is important. This subjectivity preventsus
from reducing a multi-dimension& player to a single
scalarandthendetermininga winner by comparingthese
values.

A simpleway to modeltheseaspectof coevolutionis to

allow somecomparisorbetweenindividualsto determine
a single dimension that will, for these individuals,
deteminethe outcomeof the match.Oneway to do thisis

to choosethat dimensionin which the two playersare
most distinct. We define f2(a,S), where a and each
member ofSare pairs, as follows:

f2(a,S) = iscoreZ(a, S) leq.2

where

score2((axay), (bxby)) = [ score(a, ), if (ja-bd>la,-by)

score(ay,by), otherwise.

evolutionthe number of offspring an individual produces is regulated by and, as beforescore(a,b)= 1 if a>b, 0 otherwise.

the objectivefitnessof otherindividualsin the populationaswell asits
own oljective fitness.



This gameis easilyextendedo morethantwo dimensions
by assertingthat whichever dimension has the biggest
differene between opponentsis the dimension that
determineghe outcomeof the game.Note that the game
hasthe desirablepropertythata generalista playerthatis

maximalin all dimensionscan be definedthat beatsall

otherplayers.Accordingly, we asserthatthe objectiveof

this game is to maximize all dimensions— i.e. the

objective fitness of an individual is the sum of all

dimensions.Potentially, a coevolutionary setup could

enableselectivepressureao move from onedimensionto

the otherdimensionfocusingon whicheveris weakestOn

the other hand, it might focus on one dimensionto the

detrimentof other dimensionsWe will usethis gameto

model the effects of focusingand overspecializingthat
can occur in coevolution.

2.4 INTRANSITIVE SUPERIO RITY

In Section2.2, we consideredhe casewherecoevolution
is erroneousin determining the superiority of two

individualswhen eachis comparedo someothersample
of individuals. However, when using coevolutionary
gamesit is possibleto createproblemaic scenarioeven
when comparing individuals against each other.

For example,it is quite conceivablethat for threechess
players,A, B andC, A canreliably beatB, B canreliably

beatC, but A cannotbeatC. Simply stated,we may say
that the superioriyy of playersin chessis not transitive.
Further, supposethat A may be beatenby C creatinga

loop asin the “rock, scissorspaper”’game— we might
call this a game with circular superiority relations or

circular dominance relations. This may result in local

superiorityrelationshipghat provide a deceptivegradient
andencouragestrategieghatareinferior in a globalsense
(e.g.furtherawayfrom somestrategyD which beatsA, B

and C). Or, coupledwith overspecializationcoevolving
speciesmay drive eachother from strategyto strategy,
apparentlyimproving, only to arrive back where they
started.

The conceptof intransitivesuperiorityis centralto issues
in coevolutionaryfailure (Cliff & Miller 1995), and we
wantto be ableto includeit in our minimal substrateTo
do this we will haveto use at leasta two dimensional
game. Consider:if all the relevant characteristicsof a
playercanbe representetby a singlevalue- for example,
the ability of a javelin thrower can be characterizedy
distance alone - then such circular dominanceis not
possible.But in fencing, for example,the ability of a
player is multi-dimensionalincluding for example,the
ability to parry, the ability to thrust, and stamina. As
already stated,we cannotsimply sum the ability of the
swordsmanin each of theserespects- which of these
characteristicsis critical, or the weighting of these
characteristics,dependson the characteristicsof their
opponent.In such caseswherethe ability of a playeris
multi-dimensionalit is quite possiblethat three or more
players may form a circular superiority relation.

A simple way to modify our game to incorporate
intransitivesuperiorityis to modify Equation2 sothatthe
dimensionthat determineghe outcomeof a gameis the
dimensionin which the playersare mostsimilar (instead
of mostdifferent). Thatis, whentwo players,(ay,a,) and
(by,by), entera gamethe winner will be whoeveris the
greater in the dimension in which they are closest.

f3(a,S) = iscoreS(a, S) /eq.3

where

score3((axa,). (0by) = [ score(@by), if (lacbid<la-by)

score(ay,by), otherwise.

and, as beforescore(a,b)= 1 if a>b, 0 otherwise.

Using this gamewe can easily define three playersthat
exhibit circular superiority,a beds b beatsc beatsa. For
examplea=(1,6),b=(4,5),c=(2,4): a beatsh becausghey
areclosesin they dimension ané>b,; b beatsc because
theyareclosestn they dimensionandby>c,, butc beatsa
because they are closest in thdimension and,>a,.

Note that this gamestill hasthe desirablepropertythata
playerthat is maximalin both dimensionsheatsall other
players.Again, we assertthat the objectivefitnessof an
individual in this coevolutionarygameis the sum of all
dimensions.

3 EXPERIMENTAL SET -UP

The following experimentsuse the gamesdefined in
Equationsl through 3. In additionto defining the game
we will usethereare severalotherchoicesto be madein
the setup of the coevolution:

« Number of populations(who competeswith who?,
who reproduces with who?)
« Choosing members to makgwho plays who?)
« Sample size (how many do you play?)
« Selection scheme
* Variation operators
The following experimentswill useone or two separate
populations Selectionandreproductionin onepopulation
will operateindependentlyof the other populationin the
caseswhere there are two. Unlessotherwisestated,the
populationsizeis 25 for eachpopulation.In principle,the
choice of who plays who is independentfrom the
segregationof reproduction.However, in the following
experimentswvhen thereis more than one populationwe
shalllimit ourselvego consideringhe casewhereplayers
only play againstopponentsfrom the other population.
Unless otherwisestatedthe samplesize, S=15. We use
fitness proportionateselection,and for simplicity we use
mutation as the only variational operator.One detail we
found illuminating concernsthe bias of the mutation
operator.



3.1 MUTATION BIASES

Becausawe are usingsucha simple substrateve mustbe
carefulaboutthe assumptionsve makewith respecto the
likelihood of beneficialand detrimentalvariations.If we
imagine that our individuals are representedby real
numberghenwe might reasonablyassumehata mutation
would be equallylikely to increaseor deceasehevalue-
perhapswe would add a random value drawn from a
Gaussian distribution. If, alternatively, we were to
representndividualsusinga unaryrepresentatioifsimply
the unitation, number of ones, of a fixed-length binary
string) and vary values by mutating bits then mutation
would have inherent biases. Specifically, a string with
more than half zerosis more likely to increasethan
decreasea string with morethan half onesis morelikely
to decreas¢hanincreaseandin generalthereis a natural
bias towards strings with 50:50 ones and zeros.

In real applications, for example, a neural network
controller, sorting networks, or a genetic programming
gameplayer,therearelikely to be significant mutational
biases.It may well be the casethat a random neural
network controller, sorting networkor geneticprogramis
likely to be superiorto a null or defaultrepresentatiothat
might be usedto initialize individuals; for example,a
neural network with no connectionsor weights of 0, a
sorting networkwith no comparitorspr a GP treewith no
nodesHowever,oncea moderatesolutionhasbeenfound
we would reasonablyexpectthe situationto changeln the
later stagesof evolution it is likely to be the casethat

nearlyall changego anindividual will be detrimental. We 4.2

will call this situation a negative mutation bias. These
basic observationshave theoretic underpinningsin the
simple models used by Fisher (1930).

Since we are abstractingan evolutionary substrateto a
scalar(or two) we must be carefulwith assumptiondike
unbiasedmutation. The following experimentswill usea
biased mutation. A simple way to do this is to evolve
integersas if they were representedvith a fixed length
binary string and the value they represents given by the
unitation of the string. The (simulated)string length will

be 100 and mutation per bit will be 0.05 probability of
assigning a new random value.

4 EXPERIMENTS AND RESULTS

We start with a control experiment,and then conduct
several experimentsusing Equations 1 through 3 to
illustrate a few of the concepts we have discussed.

4.1 CONTROL: MUTATION BI AS

The first experimentis a control experimentusing f(a)=0
to illustrate the effects of mutation bias and provide
reference performance levels for the following
experiments.We evolve single integer values in two
separatepopulationswith the biasedmutation discussed
previously. All individuals in the first population are
initialized to 0. All individualsin the secondpopulation

are initialized to 100. Figure 1 shows the populations
evolving over time. The vertical axis representsthe
objective fitness of individuals. Reference lines are
included at 50 and 100. The horizontal axis runs from
generation 0 to generation 600.

100

objectv.
fitness.

50

0 " Generations 600

Figure 1: Neutral selection showing mutation bias.

We seethat the popuhtion averages drawnto about50
in both casesas predicted.The performancdevel in the
latter half of the run representsa neutral, no-selection,
performance level for the populations.

EXPERIMENT 1: LOSS OF GRADIENT

Next we demonstrate that the sedijve measure of fithess
doesnot alwaysdeliverthe desiredobjectiveperformance
evenin the simple onedimensionalgameof Equationl.
Figure 2 showsthe performanceof individuals in two
coevolving populations.

100G

objectv.
fitness.

50

fit. for 0"
each 1}‘%‘*’-#
popn. Oc-)' -
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Figure 2: Coevolutiomsing Equation 1.

The additionaltwo plotsin the lower sectionof the figure
showthe averagesubjectivefitnessfor membersof each
population. Theseshowthat the subjectivefitnessof one



population is approximately one minus the subjective
fitness of the other. They also show that the subjective
fithessof either populationdoesnot vary significantly as
evolutionprogresseslespitethe fact that objectivefitness
haschangedThis is the Red Queeneffect (Cliff & Miller

1995) — thoughthe performanceof individualsimproves,
the performanceof their opponentimprovesat the same
rate,andtheyfind themselveso betteroff (subjectively).
In an experimentwhere we do not have an objective
measure of performance,this createsa problem for

monitoring pogress.

Figure 3 showsthe sameexperimentbut with a sample
size,S=1. i.e. eachplayeris evaluatedby playing against

population dominating the other may be affected by
asymmetryin the game— for example,evasionmay be
easierthanpursuit,anda populationof evaderanay geta
little too far aheadon occasions,and ceaseto provide
selectivepressure But note that evenif the coevolving
populatons do not disconnectompletelyastheydo here,
the subjective fithesses may be distorted.

4.3 EXPERIMENT 2: FOCUSSING

In these experimentswe use Equation 2 to illustrate
problems of focusing. We have already seen two
populationscoevolvingsuccessfullyon a single dimension
in Figure 2. Figure 4 showstwo populationsevolving on

ten dimensions.To avoid using a larger genome,that

one randomly selected player from the other population.
would suffer unfairly from our mutationbias, we useten

10C
dimensionsof 10 bits each(insteadof one dimensionof
100 bits). The vertical axis showsthe objectivefitnessof
] = each individual, i.e. the sum over all dimensions.
objectv = 10C
fitness. =
50i—=
£ objectv.
a fitness.
] 50
-0
subjv. l}f | =
fit. for O =
each 1'[ ; : =
opn. — =
Pop G Generations 600 E
Figure 3: Coevolution using Equation31. fsut]yv 1} . e
it. for O : “
This is clearlya differentresultaltogetherThereareclear each e WP
0 n e LT e .
pop 0 Generations 60C

downwardtrendsaswell asupwardtrends.Noticethatthe
subjective fithesses(at the bottom of the figure) show
periodsof polarization— one populationscoresl andthe
other populationscoresO — and theseperiods coincide
with the downwardtrendsin objective fitness. At these
timesall the individualsin thefirst populationbeatall the
individuals they are tested against in the second
population, or vice versa. This separation of the
populationscan be seenin the points plotted for the
objective fitness values. Thus there is no selective
pressureandthe negativemutationbiasis thusallowedto
pull the population back down towards the neutral
performancegositionshownin Figurel. Then,by chance,
the two populatons happento re-engageand race each
otherto high valuesagain.This may happerrepeatedlyin
arun.
In this game, the effect is only seen at these low
population sizes and low sample sizes, and the good
performanceseenin Figure 2 can be regainedusing a
larger population size, even with S=1. However, it is
surprisingthat sucha disconnectiorof the populationsis
possibleat all in such a simple symmetricgame.In a
practicalapplicationof coevolutionthe likelihood of one

Figure 4: Coevolution using Equation 2, 10 dimensions.

Notice thatthe performancdevelsfail to reach100. This
can be explained by noticing that whilst any one
dimensionis the dimensionthat mattersgiven the make
up of the other population,the othernine dimensionsare
likely to drift toward their neutral position. Although
selective pressure switches from one dimension to
another, high performancecanrot be maintainedin all
dimensionssimultaneouslyThis may causeindividualsto
‘forget’ skills thatthey hadlearnedpreviously,only to re-
discover them later? If our objective metric was
concernedwith only a subsetof the ten dimensionsthen
oscillaions in performancewould be pronounced.But,
even when the objective metric values all dimensions
equally we see that overspecializing can prevent the
discovery of a generalist. Depressedperformancealso
occursin singlepopulation coevolutionusing this game
(drawingS from other members of the population).

2 This is clear in theseexperimentswhen the performancein each
dimension is observed separately (not shown).



In a normal evolutionarysetup, the failure to reachthe
maximumperformancecould be remediedwith the useof

So, whereasFigure 3 showedhow subjectie preference
may give a drawwhereobjectivepreferenceshouldgive a

elitism in the objective metric. But, note that elitism actingwinner, in this experimentwe seethat Py, may give the

in the subjectivemetric cannotassistus here. We only
have accessto the ‘apparentbest’ and elitism in this
metric will not produceelitism in the actual (objective)
best. However, a “Hall of Fame” method, where
individuals play against representativesfrom past
generations may decrease ‘forgetting’ and increase
generalization (Cliff & Miller 1995).

4.4 EXPERIMENT 3: RELATI VISM

In our third experimentwe examinethe gamein Equation
3 thatexhibitsintransitivesuperiority.Figure5 showsthe
intransitive game with two populations
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Figure 5: Coevolution using Equation 3.

Clearly, things are not working the way we want themto

according to our objective metric. Notice that the

downwardtrendsare not accompaniedby a dominationof

one population by the other — the averagesubjecive

fitnessesare not polarizedasthey arein Figure3. Sothe

downward trends are not the result of drifting under
negative mutation bias. Also, the downward excursions
sometimegyo below the neutrallevel of 50 showingthat

the populations are actualbging driven downwards.

This activity canbe explainedby noticing that subjective
scoresin this game can sometimesbe improved by
lowering the value a player representsSpecifically, if a
player is losing in the chosendimensionit may be
possible to change which dimension is relevant by
lowering its value.In somecircumstanceshis may make
the seconddimensionbecomerelevantandthe outcome of
the gamemay be different. For example considera=(4,7)
andb=(5,5). The closest dimension is the firafjdb wins.
Now, a'=(3,6) is a small variation from a. The closest
dimensionwhena' playsb is the seconddimensionanda’
wins. So, a' is preferredover a eventhougha' is inferior
to a in the objective metric.

opposite answer to Py, As a result, we see that
performancecanbe driven down notjust drift down. This
dynamicis producedby the exact characteristicof the
gamewe defined.However,it is sufficientto illustratethe
point that Ps,p,; can be the reverseof Py, evenin a game
which looksinnocentenough The difficulty thatEquation
3 causesarisesfrom the fact that the feauresof a player
that control a win with respectto one player, are in

oppositionto the featuresthat will win againstanother
player. Specifically, reduction in some dimension can
allow a win againstone player, whilst inducing a loss
againstanotherplayer. We may expectsuch destructive
dynamics in any game with these counter acting
properties.

Figure 6 showsthat the effectsof intransitive superiority
can be destructiveeven in onepopulation coevolution.
That is, evenwhen playersplay againstopponentsfrom
their own population,the intransitive natureof the game
can prevent continued increases in performance.
Interestingly the datafrom this run canbe seento exhibit
some‘spontaneouspeciation’ Althoughthereis only one
population,the individuals occasionallydiverge showing
two separate supopulations.
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Figure 6: Coevolution using Equation 3: one population.

The phenomendn theseexperimentswith Equation3 are
not overcomeby largerpopulationsizesandlargersample
sizes.Examinirg the exactvaluesin bothdimensiongnot

shownin thesefigures)revealsthatevolutionin this game
is indeedmoving throughthe samepartsof strategyspace
repeatedly.Thus this simple game illustratesthe cyclic

activity often speculatedaboutin coevolution literature
(Cliff & Miller 1995).



5 CONCLUSIONS

With the useof our minimal substrateve have provided
concretellustrationsof severalcoevolutionarjissuesWe

have given simple examplesin which subjectivefitness
measure@ppearunproblematidout can actually disagree
with objective fitness.

We illustratedthree kinds of coevolutionaryfailure: loss
of gradient whereperformancalrifts (downward)because
one population dominatesthe other, over-specialization
where coevolutionfails to find gereral solutionsbecause
strategiestransition from one dimensionto the other
exploiting specific weaknessesand issuesof relativism
wheresubjectivefitnesscanactin oppositionto objective
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