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Abstract 
 

 

One of the central difficulties of coevolutionary 
methods arises from ‘intransitive superiority’ – in 
a two-player game, for example, the fact that A 
beats B, and B beats C, does not exclude the 
possibility that C beats A. Such cyclic superiority 
in a coevolutionary substrate is hypothesized to 
cause cycles in the dynamics of the population 
such that it ‘chases its own tail’ - traveling 
through some part of strategy space more than 
once despite apparent improvement with each 
step. It is often difficult to know whether an 
application domain contains such difficulties and 
to verify this hypothesis in the failure of a given 
coevolutionary set-up. In this paper we wish to 
elucidate some of the issues and concepts in an 
abstract domain where the dynamics of 
coevolution can be studied simply and directly. 
We define three simple ‘number games’ that 
illustrate intransitive superiority and resultant 
oscillatory dynamics, as well as some other 
relevant concepts. These include the distinction 
between a player’s perceived performance and 
performance with respect to an external metric, 
and the significance of strategies with a multi-
dimensional nature. These features alone can also 
cause oscillatory behavior and coevolutionary 
failure. 

Keywords: Coevolution, intransitive superiority, multiple 
dimensions, coevolutionary failure. 

1 INTRODUCTION  

Coevolution has become increasingly popular in 
Evolutionary Algorithms research (e.g. Hillis 1992, Sims 
1994, Juille 1996, Miller & Cliff 1994). The basic idea 
behind the approach seems intuitive enough – rather than 
evolve individuals against a fixed objective metric, we 
engage individuals in the task of improving their 
performance against other evolving individuals. One of 
the most unequivocal benefits of this approach comes 

from the fact that for many machine learning domains a 
suitable objective metric of performance is simply not 
available. Examples include the coevolution of pursuit and 
evasion behaviors (Miller and Cliff 1994, Reynolds 
1994), and competitive manipulation of physical objects 
(Sims 1994). Apart from this primary benefit of providing 
some target for performance, coevolution is commonly 
understood to have several other benefits. The following 
list is not a comprehensive account of coevolution’s 
supposed benefits – rather we have selected those ideas 
for which we will be able to illustrate related issues in our 
experiments – but, these ideas cover some of those most 
common in the coevolution literature. We use examples 
from the domain of chess but the concepts apply equally 
to any task that can be described using performance with 
respect to an opponent: 

a) Providing a target that is ‘hittable’ – gradient.  
If any two novice chess players play against, say, a 
Grand Master then both will lose and their 
performance will be indistinguishable. But if the 
novices play against each other the superiority of one 
with respect to the other will be revealed. By 
engaging players in the mutual pressure to outperform 
one-another coevolution provides adaptive gradients 
that might otherwise be hard to engineer. Pollack & 
Blair (1996) provide an example where ‘self-play’ 
provides a gradient for learning. 

b) A target that is relevant – focusing.  
If we have our two novices play against a (fixed) set 
of other chess players of various abilities then the 
number of games they win might be different, and we 
may select the better. But how are we to devise this 
set of opponents? A random set may not be 
representative of all chess players. Any given set may 
fail to test certain aspects of play. By using other 
evolving players as opponents coevolution may focus 
adaptation on those aspects of a task that have not yet 
been optimized. Examples where one ‘species’ is 
used to provide a focused test-set for another species 
include Hillis (1992), and Juille (1996). 

c) A moving target – open-endedness.  
Even if we could find a representative fixed set of 
opponents that provided a gradient from novice play 
through to master level, any fixed set will have an 



upper limit. Using coevolution there is always the 
potential to be a better player than the best player 
found so far, and when found such a player provides 
the new target to beat. Open-endedness is often cited 
as a benefit of coevolution, e.g. (Ficici 1998) 

However, although these notions are common, and seem 
intuitive enough, they are not very well defined. 
Moreover, there is increasing awareness, in this same 
community of researchers, that coevolution can sometimes 
introduce as many problems as it solves. In the list below 
we describe informally some of the ways in which a 
coevolving target for performance might not be hittable, 
relevant, or moving in the right direction: 

a) Loss of gradient.  
Suppose an evolving population of opponents 
becomes too good – we may find ourselves with an 
‘unhittable’ target once more. For example, perhaps 
evasion is very much easier than pursuit, and none of 
the evaders can be caught. In this case we lose the 
gradient information and players may drift without 
improvement. 

b) Focusing on the wrong things.  
The ability to focus on an opponent’s weakness can 
provide an easy way to win. This may produce 
degenerate players that over-specialize on opponents 
weaknesses, and fail to learn a task in a general way. 

c) ‘Relativism’.  
When opponents co-adapt, and describe a task for 
one another, we suppose that they will 'leap-frog' one 
another in steps of increasing performance. But, if A’s 
performance is defined by B, and B’s performance is 
defined by A, then the adaptive system is 
disconnected from any absolute measure of 
performance. Two good players get the same score 
against each other, as do two bad players. So, 
supposing variation is equally likely to take the 
standard of play down as up (perhaps more likely), 
what is to ensure that these moving targets will move 
the way we want them to? Such relativism may enable 
ways for the players to ‘subvert’ the game we as 
researchers had in mind, and may lead to mediocre 
players that never improve. 

Problems such as these may be involved in some of the 
failures in the literature, but it is very difficult to be sure. 
Identifying the cause of a failure is complicated by the 
fact that it is very difficult to separate the dynamics of the 
coevolutionary set-up from the details of the application 
domain, be it backgammon, robotics, pursuit and evasion, 
or whatever. Thus, the benefits and the problems with 
coevolution continue to be a bit vague and ill -defined; 
often going no further than the level of description we 
have given above, and relying on metaphors like ‘arms 
race’ and ‘collusion’.  

Some work has addressed issues in coevolution and 
relativism in the abstract, which enables particular 
underlying concepts to be illustrated and investigated 
(Maynard-Smith 1982, Cliff & Miller 1995, Kauffman 

1993). In this style, we introduce in this paper a minimal 
substrate in which coevolutionary concepts, dynamics, and 
problems can be investigated - in particular, the 
importance of intransitive superiority. Specifically, we 
evolve scalar values and vectors under various 
coevolutionary set-ups. This substrate enables us to 
illustrate some important concepts that may be underlying 
the problems we introduced above. Our experiments 
provide concrete examples for each of the ideas we have 
discussed, and assist us in gaining some defining concepts 
that may be useful in diagnosing coevolution failures.  

The following sections are organized as follows: Section 2 
introduces some of the concepts we see as central to the 
issues we described above, and describes the minimal 
substrate we use for our investigations. Section 3 
describes other aspects of our coevolutionary set-up. 
Section 4 describes experiments that each illustrate a 
different potential cause of failure in coevolution. Section 
5 concludes. 

2 A MINIMAL SUBSTRATE  

In this section we introduce the minimal substrate that we 
will use in our experiments. In the process we will 
describe some of the concepts that we see as important for 
understanding the issues involved in coevolution. 

2.1 SCALARS 

We commence by considering the coevolution of scalar 
values. For example, we could evolve integers using 
coevolutionary techniques to find high values. In this 
domain we know that the task is trivial and that evolving 
integers is easy, thus any problems we have using 
coevolutionary techniques are a product of coevolution. 
Although it may seem too trivial to be of use we will see 
that there are several phenomena that can be illustrated 
with its help.  

We assert that the goal of the evolutionary process is to 
maximize, a, the value being evolved. Clearly, if we 
evolve integer values using a fitness function, f(a)=a, then 
the problem is trivial. However, we will investigate what 
happens when we coevolve these values using a fitness 
function, f(a,S), that returns a value for one number, a, 
with respect to a set of other numbers, S. S is a sample of 
individuals against which a will be tested. For the 
purposes of our experiments we will use f(a,S) that counts 
the number of members of S that are less than a: 
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where score(a,b)=1 if a>b, 0 otherwise.    

In this way we may evolve the scalar values as if they 
were playing a ‘greater than’ game, rather than evolving 
them against an objective fitness function.   

Clearly, if S were the complete set of possible values in 
the domain of a, then our coevolutionary set-up would be 



the same as the trivial evolutionary case. But naturally, for 
our purposes S will consist of other coevolving 
individuals. In some cases these will be drawn from the 
same population and may therefore be genetically related. 
In other cases, they will be drawn from a separate 
coevolving population. We will see that the effects of this 
choice can be significant. 

2.2 OBJECTIVE FITNESS, A ND SUBJECTIVE 
FITNESS 

In evolutionary algorithms the fitness of an individual is 
given by a 'fitness function' or 'objective function' - this 
provides some measure of the individual's performance or 
quality with respect to the task at hand. In coevolution, 
there is still a fitness function, e.g. Equation 1 - but the 
value it returns is no longer objective, it is subject to the 
sample chosen. To make the distinction clear, we will call 
the metric that we as researchers seek to optimize the 
objective fitness, and we will call the metric of 
performance as perceived by the co-evolving individual 
the subjective fitness.1 

We asserted above that our objective fitness was f(a)=a. It 
seems fairly likely that anything adapting under our 
‘greater than’ game will become maximized, as we 
intended, but this is not necessarily so. Consider making a 
judgment: which of a and b is to be preferred? (where a 
and b are any two individuals). With respect to our 
objective metric, the preferred individual is whichever is 
larger in value. They may be equally preferred only if they 
are equal in value. Let us denote this objective preference 
relation as Pobj(a,b). In the coevolutionary game, the one 
that will be preferred will be whichever gets the highest 
value when played in the ‘greater than’ game against S. 
This is its subjective fitness. If f(a,Sa) is greater than 
f(b,Sb) (according to Equation 1) then a is preferred. Let 
us write the coevolutionary preference as Psubj(a,b), then 
we have stated that Psubj(a,b)=Pobj(f(a,Sa), f(b,Sb)). Notice 
that we do not assume that a and b are evaluated against 
the same S. And it should be clear that we may get a 
different preference depending on how we choose Sa and 
Sb.  

Many of the problems we encounter in coevolution can be 
described as arising from the separation between a 
player’s performance as they perceive it, from their 
performance with respect to an external metric. A 
mismatch of preference relations from objective and 
subjective metrics, i.e. Psubj(a,b) ≠ Pobj(a,b), will occur 
depending on the choice of S. Clearly if any choice of S is 
possible then we can reverse the preference relation of a 
and b. For example, suppose, a =4 and b=5, so Pobj(a ,b) 
returns b. If we choose Sa={1,2,3} and Sb={6,7,8} then 

                                                           
1 Notice that neither of these correspond to the Darwinian meaning of 
fitness relating to the number of viable offspring. Even in regular 
evolution the number of offspring an individual produces is regulated by 
the objective fitness of other individuals in the population as well as its 
own objective fitness. 

f(a,Sa)=3, and f(b,Sb)=0, so Psubj(a,b)=a. The subjective 
and objective preferences give opposite answers. 

Even if S is the same for both a and b we can get an 
erroneous result. Consider, Sa=Sb={1,2,3}. Both a and b 
score the same as each other because they win against all 
opponents. Alternatively, we can choose S so that they 
lose against all opponents. So, Psubj(a,b)=“draw”. This 
corresponds to the ‘loss of gradient problem’ we 
described in the introduction. 

To be sure, in a coevolutionary set-up, the composition of 
S is not arbitrary. But, we must be aware that even though 
the choice of a coevolutionary game may not seem 
problematic, we have already disconnected from the 
objective measure of performance. We will see that even 
our simple ‘greater than’ game can cause problems even 
in a quite normal coevolutionary set-up. Whereas, in an 
applied coevolution, the absence of an objective metric 
can prevent us from examining what is really happening, 
here we are able to illustrate these concepts clearly 
because we have access to both the subjective and 
objective fitnesses. 

2.3 MULTIPLE DIMENSIONS  

The second feature of our minimal substrate is the 
introduction of additional dimensions to the definition of 
an individual. That is, we may represent individuals by 
pairs of scalars, or vectors. For simplicity, let us discuss 
pairs, and call the two dimensions x and y. We will let 
each dimension represent a different aspect of a player’s 
abilities. It is important to realize that we cannot 
necessarily reduce multiple dimensions to a single scalar 
value that will represent a player’s quality. We cannot let 
the fitness of a player be represented by some weighted 
sum of its component dimensions, for example. This is 
because the value of the weighting for an aspect of play 
may depend on who the opponent is; for one opponent, x 
may be more important than y, for another opponent 
maybe only y is important. This subjectivity prevents us 
from reducing a multi-dimensional player to a single 
scalar and then determining a winner by comparing these 
values.  

A simple way to model these aspects of coevolution is to 
allow some comparison between individuals to determine 
a single dimension that will, for these individuals, 
determine the outcome of the match. One way to do this is 
to choose that dimension in which the two players are 
most distinct. We define f2(a,S), where a and each 
member of S are pairs, as follows: 
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where 

and, as before, score(a,b)= 1 if a>b, 0 otherwise. 

score2((ax,ay),(bx,by)) = {  
score(ax,bx), if (|ax-bx|>| ay-by|) 
score(ay,by), otherwise. 



This game is easily extended to more than two dimensions 
by asserting that whichever dimension has the biggest 
difference between opponents is the dimension that 
determines the outcome of the game. Note that the game 
has the desirable property that a generalist, a player that is 
maximal in all dimensions, can be defined that beats all 
other players. Accordingly, we assert that the objective of 
this game is to maximize all dimensions – i.e. the 
objective fitness of an individual is the sum of all 
dimensions. Potentially, a coevolutionary set-up could 
enable selective pressure to move from one dimension to 
the other dimension focusing on whichever is weakest. On 
the other hand, it might focus on one dimension to the 
detriment of other dimensions. We will use this game to 
model the effects of focusing and over-specializing that 
can occur in coevolution. 

2.4 INTRANSITIVE SUPERIO RITY  

In Section 2.2, we considered the case where coevolution 
is erroneous in determining the superiority of two 
individuals when each is compared to some other sample 
of individuals. However, when using coevolutionary 
games, it is possible to create problematic scenarios even 
when comparing individuals against each other. 

For example, it is quite conceivable that for three chess 
players, A, B and C, A can reliably beat B, B can reliably 
beat C, but A cannot beat C. Simply stated, we may say 
that the superiority of players in chess is not transitive. 
Further, suppose that A may be beaten by C creating a 
loop as in the “rock, scissors, paper” game –  we might 
call this a game with circular superiority relations or 
circular dominance relations. This may result in local 
superiority relationships that provide a deceptive gradient 
and encourage strategies that are inferior in a global sense 
(e.g. further away from some strategy D which beats A, B 
and C). Or, coupled with over-specialization, coevolving 
species may drive each other from strategy to strategy, 
apparently improving, only to arrive back where they 
started. 

The concept of intransitive superiority is central to issues 
in coevolutionary failure (Cliff & Miller 1995), and we 
want to be able to include it in our minimal substrate. To 
do this we will have to use at least a two dimensional 
game. Consider: if all the relevant characteristics of a 
player can be represented by a single value - for example, 
the ability of a javelin thrower can be characterized by 
distance alone - then such circular dominance is not 
possible. But in fencing, for example, the ability of a 
player is multi-dimensional including for example, the 
ability to parry, the ability to thrust, and stamina. As 
already stated, we cannot simply sum the ability of the 
swordsman in each of these respects - which of these 
characteristics is critical, or the weighting of these 
characteristics, depends on the characteristics of their 
opponent. In such cases where the ability of a player is 
multi-dimensional it is quite possible that three or more 
players may form a circular superiority relation. 

A simple way to modify our game to incorporate 
intransitive superiority is to modify Equation 2 so that the 
dimension that determines the outcome of a game is the 
dimension in which the players are most similar (instead 
of most different). That is, when two players, (ax,ay) and 
(bx,by), enter a game the winner will be whoever is the 
greater in the dimension in which they are closest.  
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where 

score3((ax,ay),(bx,by)) = {  
score(ax,bx), if (|ax-bx|<| ay-by|) 
score(ay,by), otherwise. 

and, as before, score(a,b)= 1 if a>b, 0 otherwise. 

Using this game we can easily define three players that 
exhibit circular superiority, a beats b beats c beats a. For 
example, a=(1,6), b=(4,5), c=(2,4): a beats b because they 
are closest in the y dimension and ay>by; b beats c because 
they are closest in the y dimension and by>cy, but c beats a 
because they are closest in the x dimension and cx>ax. 

Note that this game still has the desirable property that a 
player that is maximal in both dimensions beats all other 
players. Again, we assert that the objective fitness of an 
individual in this coevolutionary game is the sum of all 
dimensions. 

3 EXPERIMENTAL SET -UP 

The following experiments use the games defined in 
Equations 1 through 3. In addition to defining the game 
we will use there are several other choices to be made in 
the set-up of the coevolution: 

• Number of populations (who competes with who?, 
who reproduces with who?) 

• Choosing members to make S (who plays who?) 
• Sample size (how many do you play?) 
• Selection scheme 
• Variation operators 

The following experiments will use one or two separate 
populations. Selection and reproduction in one population 
will operate independently of the other population in the 
cases where there are two. Unless otherwise stated, the 
population size is 25 for each population. In principle, the 
choice of who plays who is independent from the 
segregation of reproduction. However, in the following 
experiments when there is more than one population we 
shall limit ourselves to considering the case where players 
only play against opponents from the other population. 
Unless otherwise stated the sample size, S=15. We use 
fitness proportionate selection, and for simplicity we use 
mutation as the only variational operator. One detail we 
found illuminating concerns the bias of the mutation 
operator.  



3.1 MUTATION BIASES  

Because we are using such a simple substrate we must be 
careful about the assumptions we make with respect to the 
likelihood of beneficial and detrimental variations. If we 
imagine that our individuals are represented by real 
numbers then we might reasonably assume that a mutation 
would be equally likely to increase or decrease the value - 
perhaps we would add a random value drawn from a 
Gaussian distribution. If, alternatively, we were to 
represent individuals using a unary representation (simply 
the unitation, number of ones, of a fixed-length binary 
string) and vary values by mutating bits then mutation 
would have inherent biases. Specifically, a string with 
more than half zeros is more likely to increase than 
decrease, a string with more than half ones is more likely 
to decrease than increase, and in general, there is a natural 
bias towards strings with 50:50 ones and zeros.  

In real applications, for example, a neural network 
controller, sorting networks, or a genetic programming 
game player, there are likely to be significant mutational 
biases. It may well be the case that a random neural 
network controller, sorting network or genetic program is 
likely to be superior to a null or default representation that 
might be used to initialize individuals; for example, a 
neural network with no connections or weights of 0, a 
sorting network with no comparitors, or a GP tree with no 
nodes. However, once a moderate solution has been found 
we would reasonably expect the situation to change. In the 
later stages of evolution it is likely to be the case that 
nearly all changes to an individual will be detrimental. We 
will call this situation a negative mutation bias. These 
basic observations have theoretic underpinnings in the 
simple models used by Fisher (1930).  

Since we are abstracting an evolutionary substrate to a 
scalar (or two) we must be careful with assumptions like 
unbiased mutation. The following experiments will use a 
biased mutation. A simple way to do this is to evolve 
integers as if they were represented with a fixed length 
binary string and the value they represent is given by the 
unitation of the string. The (simulated) string length will 
be 100 and mutation per bit will be 0.05 probability of 
assigning a new random value. 

4 EXPERIMENTS AND RESULTS 

We start with a control experiment, and then conduct 
several experiments using Equations 1 through 3 to 
illustrate a few of the concepts we have discussed. 

4.1 CONTROL: MUTATION BI AS 

The first experiment is a control experiment using f(a)=0 
to illustrate the effects of mutation bias and provide 
reference performance levels for the following 
experiments. We evolve single integer values in two 
separate populations with the biased mutation discussed 
previously. All individuals in the first population are 
initialized to 0. All individuals in the second population 

are initialized to 100. Figure 1 shows the populations 
evolving over time. The vertical axis represents the 
objective fitness of individuals. Reference lines are 
included at 50 and 100. The horizontal axis runs from 
generation 0 to generation 600. 

 

 

 

 

 

 

 

 

 

 

 

 

 

We see that the population average is drawn to about 50 
in both cases, as predicted. The performance level in the 
latter half of the run represents a neutral, no-selection, 
performance level for the populations. 

4.2 EXPERIMENT 1: LOSS OF GRADIENT  

Next we demonstrate that the subjective measure of fitness 
does not always deliver the desired objective performance 
even in the simple one-dimensional game of Equation 1. 
Figure 2 shows the performance of individuals in two 
coevolving populations. 

 

Figure 2: Coevolution using Equation 1. 

The additional two plots in the lower section of the figure 
show the average subjective fitness for members of each 
population. These show that the subjective fitness of one 

0 600 Generations 

objectv. 
fitness. 

50 

0 

100 

0 600 Generations 

objectv. 
fitness. 

50 

0 
subjv. 
fit. for 
each 
popn. 0 

1 

100 

0 
1 

Figure 1: Neutral selection showing mutation bias. 



population is approximately one minus the subjective 
fitness of the other. They also show that the subjective 
fitness of either population does not vary significantly as 
evolution progresses despite the fact that objective fitness 
has changed. This is the Red Queen effect (Cliff & Miller 
1995) – though the performance of individuals improves, 
the performance of their opponents improves at the same 
rate, and they find themselves no better off (subjectively). 
In an experiment where we do not have an objective 
measure of performance, this creates a problem for 
monitoring progress. 

Figure 3 shows the same experiment but with a sample 
size, S=1. i.e. each player is evaluated by playing against 
one randomly selected player from the other population. 

 
 

Figure 3: Coevolution using Equation 1, S=1. 

This is clearly a different result altogether. There are clear 
downward trends as well as upward trends. Notice that the 
subjective fitnesses (at the bottom of the figure) show 
periods of polarization – one population scores 1 and the 
other population scores 0 – and these periods coincide 
with the downward trends in objective fitness. At these 
times all the individuals in the first population beat all the 
individuals they are tested against in the second 
population, or vice versa. This separation of the 
populations can be seen in the points plotted for the 
objective fitness values. Thus there is no selective 
pressure and the negative mutation bias is thus allowed to 
pull the population back down towards the neutral 
performance position shown in Figure 1. Then, by chance, 
the two populations happen to re-engage and race each 
other to high values again. This may happen repeatedly in 
a run. 

In this game, the effect is only seen at these low 
population sizes and low sample sizes, and the good 
performance seen in Figure 2 can be regained using a 
larger population size, even with S=1. However, it is 
surprising that such a disconnection of the populations is 
possible at all in such a simple symmetric game. In a 
practical application of coevolution the likelihood of one 

population dominating the other may be affected by 
asymmetry in the game – for example, evasion may be 
easier than pursuit, and a population of evaders may get a 
little too far ahead on occasions, and cease to provide 
selective pressure. But note that even if the coevolving 
populations do not disconnect completely as they do here, 
the subjective fitnesses may be distorted. 

4.3 EXPERIMENT 2: FOCUSSING 

In these experiments we use Equation 2 to illustrate 
problems of focusing. We have already seen two 
populations coevolving successfully on a single dimension 
in Figure 2. Figure 4 shows two populations evolving on 
ten dimensions. To avoid using a larger genome, that 
would suffer unfairly from our mutation bias, we use ten 
dimensions of 10 bits each (instead of one dimension of 
100 bits). The vertical axis shows the objective fitness of 
each individual, i.e. the sum over all dimensions. 

 

Figure 4: Coevolution using Equation 2, 10 dimensions. 

Notice that the performance levels fail to reach 100. This 
can be explained by noticing that whilst any one 
dimension is the dimension that matters given the make-
up of the other population, the other nine dimensions are 
likely to drift toward their neutral position. Although 
selective pressure switches from one dimension to 
another, high performance cannot be maintained in all 
dimensions simultaneously. This may cause individuals to 
‘forget’ skills that they had learned previously, only to re-
discover them later.2 If our objective metric was 
concerned with only a subset of the ten dimensions then 
oscillations in performance would be pronounced. But, 
even when the objective metric values all dimensions 
equally we see that over-specializing can prevent the 
discovery of a generalist. Depressed performance also 
occurs in single-population coevolution using this game 
(drawing S from other members of the population). 

                                                           
2 This is clear in these experiments when the performance in each 
dimension is observed separately (not shown). 
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In a normal evolutionary set-up, the failure to reach the 
maximum performance could be remedied with the use of 
elitism in the objective metric. But, note that elitism acting 
in the subjective metric cannot assist us here. We only 
have access to the ‘apparent best’ and elitism in this 
metric will not produce elitism in the actual (objective) 
best. However, a “Hall of Fame” method, where 
individuals play against representatives from past 
generations may decrease ‘forgetting’ and increase 
generalization (Cliff & Miller 1995). 

4.4 EXPERIMENT 3: RELATI VISM  

In our third experiment we examine the game in Equation 
3 that exhibits intransitive superiority. Figure 5 shows the 
intransitive game with two populations.  

 

Figure 5: Coevolution using Equation 3. 

Clearly, things are not working the way we want them to 
according to our objective metric. Notice that the 
downward trends are not accompanied by a domination of 
one population by the other – the average subjective 
fitnesses are not polarized as they are in Figure 3. So the 
downward trends are not the result of drifting under 
negative mutation bias. Also, the downward excursions 
sometimes go below the neutral level of 50 showing that 
the populations are actually being driven downwards.  

This activity can be explained by noticing that subjective 
scores in this game can sometimes be improved by 
lowering the value a player represents. Specifically, if a 
player is losing in the chosen dimension it may be 
possible to change which dimension is relevant by 
lowering its value. In some circumstances, this may make 
the second dimension become relevant and the outcome of 
the game may be different. For example, consider a=(4,7) 
and b=(5,5). The closest dimension is the first, and b wins. 
Now, a'=(3,6) is a small variation from a. The closest 
dimension when a'  plays b is the second dimension and a'  
wins. So, a'  is preferred over a even though a'  is inferior 
to a in the objective metric.  

So, whereas Figure 3 showed how subjective preference 
may give a draw where objective preference should give a 
winner, in this experiment, we see that Psubj may give the 
opposite answer to Pobj. As a result, we see that 
performance can be driven down not just drift down. This 
dynamic is produced by the exact characteristics of the 
game we defined. However, it is sufficient to illustrate the 
point that Psubj can be the reverse of Pobj even in a game 
which looks innocent enough. The difficulty that Equation 
3 causes arises from the fact that the features of a player 
that control a win with respect to one player, are in 
opposition to the features that will win against another 
player. Specifically, reduction in some dimension can 
allow a win against one player, whilst inducing a loss 
against another player. We may expect such destructive 
dynamics in any game with these counter acting 
properties.  

Figure 6 shows that the effects of intransitive superiority 
can be destructive even in one-population coevolution. 
That is, even when players play against opponents from 
their own population, the intransitive nature of the game 
can prevent continued increases in performance. 
Interestingly, the data from this run can be seen to exhibit 
some ‘spontaneous speciation’. Although there is only one 
population, the individuals occasionally diverge showing 
two separate sub-populations.  

 

 

Figure 6: Coevolution using Equation 3: one population. 

The phenomena in these experiments with Equation 3 are 
not overcome by larger population sizes and larger sample 
sizes. Examining the exact values in both dimensions (not 
shown in these figures) reveals that evolution in this game 
is indeed moving through the same parts of strategy space 
repeatedly. Thus this simple game illustrates the cyclic 
activity often speculated about in coevolution literature 
(Cliff & Miller 1995). 
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5 CONCLUSIONS 

With the use of our minimal substrate we have provided 
concrete illustrations of several coevolutionary issues. We 
have given simple examples in which subjective fitness 
measures appear unproblematic but can actually disagree 
with objective fitness.  

We illustrated three kinds of coevolutionary failure: loss 
of gradient where performance drifts (downward) because 
one population dominates the other, over-specialization 
where coevolution fails to find general solutions because 
strategies transition from one dimension to the other 
exploiting specific weaknesses, and issues of relativism 
where subjective fitness can act in opposition to objective 
fitness. Each of these weaknesses in coevolution can cause 
repeated ‘forgetting’ and re-discovery of strategies and 
prevent the continued improvement in performance that 
we would like to see. 

Important concepts in these illustrations include the 
separation of objective and subjective fitness: the metric 
that we as researchers seek to optimize, and the metric of 
performance as perceived by the co-evolving individual, 
respectively. Also, the fact that a coevolutionary game 
may not be reducible to a single dimension – the 
performance of an individual is always with respect to 
some other individual (or set of individuals) – thus the 
subjective metric may not be reduced to a one-
dimensional notion of quality, or a single superiority 
ordering. Finally, intransitivity is an important 
characteristic of subjective superiority that can be 
particularly problematic. 

In illustrating these problems and concepts we have made 
many choices both in the game and the coevolutionary set-
up. Our substrate is by no means the only simple substrate 
in which these concepts could be illustrated. Nonetheless, 
the coevolution of scalars and vectors provides one 
concrete example for several of the slippery issues 
common in the coevolution literature. And, unlike 
previous work, in this substrate we are able to properly 
separate the issues of coevolution from the issues of any 
complex application domain. The problems caused by 
these simple games caution us in making assumptions 
about more complex coevolutionary endeavors.  

In previous work we have used the term ‘mediocre stable 
state’ to mean what we may now describe as a condition 
where the coevolutionary system is not producing 
improved performance in the objective metric despite 
continued adaptive steps in the subjective metric. This 
paper has begun to decompose the mechanisms that may 
be behind such failures, and in so doing, it may assist us in 
at least diagnosing problems in future. Related work 
builds upon the insights here to formulate an optimization 
method that explicitly respects the multi-dimensional 
nature of coevolutionary games by applying the notions of 
multi-objective optimization to a set of subjective scores. 
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