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Abstract

One-point (or n-point) crosover has the
property that schemata echibited by bdh
parents are ‘respeded [ transferred to the
offspring withou disruption. In addition, new
schemata may, potentially, be aeaed by
combination d the genes on which the parents
differ. Some ague that the preservation o
similarity is the important asped of crossover,
and that the combination d differences (key to
the building-block hypahesis) is unlikely to be
valuable. In this paper, we discussthe operation
of recombination on a hierarchicd building
block problem. Uniform crossover, which
preserves sSmilarity, fails on this problem.
Whereas, one-point crosver, that baoth
preserves smilarity and combines differences,
succeas. In fad, a somewhat perverse
recombination  operator, that  combines
differences but destroys shemata that are
commonto bah parents, also succeals. Thus, in
this problem, combination o schemata from
dissmilar parents is required, and preserving
similarity is not required. The test problem
represents an extreme cae, but it serves to
ill ustrate the different aspeds of recombination
that are available in regular operators sich as
one-point crossover.

1 INTRODUCTION

One feaure common to ore-point crosover [Holland
1979, n-point crosover, and unform crossover
[Syswerda 1989 is that all these operators preserve the
similarity exhibited by the parents. That is, for any locus
where the parents' genes have the same dlele, the dild
will also take that allele. The operators are distinguished
by how they hande the genes that disagree (Figure 1).
Radcliffe [199] cdls the dharaderistic of preserving

similarity “resped” and argues that resped is a necessary
gtarting pant for recombination operators. Syswerda
[1989 argues that this feaure of recmbination is
sufficient for succesful crosover, and even suggests
that the other characderistics of one or n-point crossover
are undesirable. Chen [1999 amplifies this point of view
that preserving similarity is more important than any
other feaure of recmbination. He hypahesizes that the
benefit of recombination comes from the fad that it
exploits the property that “schemata cmmon to above
average solutions are &owve arerage”. Chen & Smith
[1999 suggest that “preservation d common schemata
is the ceitra source of power in recombination
operators.

a 00011] 101011
b 10101 100110
one-poi nt alaal 10bblb

uni form ?0??1 107?17

Figure 1. One-wpoint, and uriform crosover are
distinguished by hav they hande dlelesthat disagree In
one-point, disagreementsin gene values that occur to the
left of the aossover point are resolved in favor of parent
a, and those to the right are resolved in favor of parent b.
In uriform crossover, loci with disagreements may take a
gene from either parent at random.

If we ae to believe that the important asped of
recombination is that it preserves the common parts of
the parents then it makes littl e sense to combine parents
that are too dsdmilar. This concurs with the idea that
parents sleded from two dfferent fithess pe&ks are
likely to produce an dffspring that lands in the valley
between. This point of view is widely suppated and
typified by the proposal of niching and spedation
methods such as [Deb & Goldberg 1989 where mating
is restricted to individuals that are genatypicdly similar.
It isalso ore of the matives behind spatially distributed
GAs [Starkwedher et al 1991 and multi-deme GAs
[Goldberg et al 1994 that promote breading within loca

populations whilst ‘long-distance’ breeding is less likely.



So, it seems we shoud exped recmmbination to work
well when parents are smilar, and an important feaure
of any crosover operator is that it preserves smilarity.
But, what about the building-block hypahesis [Holland
1975 Goldberg 198972 Is it not adso GA lore that
recombination works when it is able to take the good
parts (building-blocks) from two dfferent parents and
put them together? The ideabehind recombination as it
was originaly conceived [Holland 1975 is to take sub-
parts from individuals that suppy different sub-solutions
and combine them. (This explains why ‘long-distance
mating, aswe cdled it, is allowed at al in the distributed
methods).

In this paper, we suppat the basic intuition kehind the
building-block hypahesis: the GA performs well when it
is able to combine low-order schemata of above average
fitness to find higher-order schemata of higher-fitness
More predsely, we shoud say that this kind d
‘combination’ can be valuable on some dass of
problems. To investigate this, we will separate the
combination feaure of crosover from the similarity
preserving feature of crossover.

a) Similarity and combination: one-point crossover

Ordinary one-point crosover both preserves smil arity
and, potentially, combines differences’. A schema is
heritable if the parents agree on the gene values at eath
loci of the schema, and/or if the schema does not span
aaossa aosover point. New schemata may be aeaed
by combination.

b) Similarity without combination: respectful/uniform

Radcliffe [199] suppies a aossover operator that
explicitly preserves gmilarity but does not permit
combination - ‘Random Respedful Recombination’, R’.
This operator assgns a randanly seleded allele to any
loci where the parents genes are nat in agreament. R’ is
equivalent to Syswerda' s uniform crosover when using
binary encoding becaise seleding genes that disagree
from either parent with equal probability is equivalent to
randam assgnment of bits at these loci. In uriform
crosover, or R’, a schema is not heritable unless the
parents agree on the gene values at ead loci of the
schema. New schemata may be aeaed ony by the
‘maao-mutations [Jones 1993 indwed by the
conflicting genes.

¢) Combination without similarity: disrespectful

An operator that suppiesthe mnwerseis nat to be found
in the literature. What kind o crosover does nat
preserve similarity? Purely for the purposes of
illustrating ou point, we introduce anew recombination
operator - “disrespedful crosover”. Figure 2 shows that
disrespedful crossover exhibits the quite perverse feaure
of assgning a new randam value to any loci where the
parents agree The remaining genes are transmitted as

! Two-point crosover, or in general, n-point crosover for low n,
exhibits the same properties.

per one-point crosover. Disrespedful combinationis the
complement of uniform crosover in that it respeds
differences rather than similarities. New schemata may
be aeded by combination a by the maao-mutations
induced by the agreeing gerfes.

a 00011] 101011
b 10101 100110
one- poi nt al0aal 10bblb

?0??1 10?717
a?aa? ?7?bb?b

uni form
di srespect ful

Figure 2: Disrespedful crossover is contrasted with ore-
point, and uriform crosover. In disrespedful crossover
gene values that occur to the left of the dosover point
are resolved in favor of parent a, and those to the right
are resolved in favor of parent b, except where the gene
values of the parents agree Genes at loci where the
parents agree are replaced with random alleles.

With the dd of these three cossver operators we can
compare the operation o an operator that only preserves
similarity, with ore that only allows combination, and
with regular one-point that supgdies bath. Our purpose is
to understand what the different comporents of a
succesul recombination operator might be, and more
spedficdly to ascertain whether the @mbination o
digtinct building-blocks can pay any part in the
operation of the GA.

For these purposes we will use ahierarchicd building
block problem, hierarchicd-if-and-only-if (H-IFF), from
previous work [Watson et al 1998 Watson & Polladk
1999K. This problem is designed to investigate the dass
of problems for which genetic dgorithms are well suited.
The work in this paper continues to delineae the
properties of this type of problem, and to explore the
essential characteristics of a GA that will solve it.

We will seethat the GA, using deterministic crowding
[Mahfoud 199% as a diversity maintenance technique,
and ore-point crosover is able to solve H-IFF. Since
uniform crosover does not succeal, we a@nclude that
smilarity preserving is not sufficient. Conwversely,
disrespedful recombination dces sicceal. This indicates
that the aiticd asped of recombination in this problem
is combining dfferent schemata. The reader may find it
surprising that this operator succedls - it means that the
massve disruption caused by this operator apparently
does nat matter. We will discussthe particular properties
of the problem we ae using that make this possble, and
note that disruptive recombination fail s completely when
applied to a variant of the problem that shoud ke eay.’
In this variant of H-1FF the value of competing bulding-
blocks is depressed to zero, and thase blocks that remain

? The paint of the operator is to supgy combination without preserving
similarity - but, we shall investigate later whether the maao-mutation
aspect of the operator may be valuable.

® Recdl that the operator was for the purposes of ill ustrating a point - we
would never (almost never) propose disrespedful crosover as a serious
option for an applied GA.



are separable.” The other side of the win is that uniform
crosver works very well on this easy variant. One-
point crosover, which offers both similarity preservation
and combination, succeals always. It is interesting to
note that nealy al building-block problems in the GA
literature ae separable [Watson et a 1994. Thus we
sugeest that the reason the community has been ureble
to pin-down an understanding o the combinative aspeds
of the GA may be simply because the dassof problems
discussed has been inappropriate. An aternative
explanation is that the mbinative apeds of
recombination are only effedive in a particular class of

resultant sub-string constitutes a building-block and
confers a fithess cortribution equal to its sze if al the
bits in the block have the same dlele value - either all
ones or al zeros. The fitness of the whole string is the
sum of these fithess contributions for all blocks at all
levels.

o 1, if |B|=1, else
f(B)= H |B| +f(B,) +f(B,), if (Cib =0} or Cifb =1}),
H (B, +f(B,), otherwise. Eq. :

where B is a block of bits, {b,,b,,...b}, |B| is the size of

problem - the extent of this class is yet to be determinedthe block=n, b is the ith element of B, and B, and B, are

The remaining sedions of this paper are organized as
follows. The next sedion describes the hierarchicd
building-block function that we will use in these
investigations. Sedion 3 describes the genetic dgorithm
details and ou experimental set-up. Sedion 4 pesents
results and dscusses the mndtions where eat operator
is successful. Section 5 concludes.

2 HIERARCHICAL-IF-AND-ONLY-IF

Previous work [Watson et a 1998 Watson & Pollack
19991 introduced a test problem which is gedficdly
designed to investigate the dass of problems for which
GAs are well suited. Like the second erson d the
Royal Roads problem defined in [Forrest & Mitchell
1993, it is a hierarchicd building-block problem. But
unlike the Royal Roads, the building-blocksin H-IFF are
nat separable. In H-1FF the building-blocks are strongy
and nonlinealy dependent on ore acther, i.e. the
optimal schemata for one block is grongy dependent on
the setting of bits in other blocks.

In H-IFF the interdependency of blocks is implemented
via two sets of competing schemata. That is, athough
blocks at one level in the hierarchy are mnfined to non
overlapping partitions as in aher building-block
problems, ead partition hes two ogtimal settings for the
bits therein. These competing schemata ae maximally
digtinct — spedficdly, all-ones and al-zeros. Which of
these two schemata shoud be used depends on which has
been used in a neighbaing Hock — if the neighbaing
block is based on ones then so shoud the block in
question, if zeros then zeros. This compatibility of
blocks is rewarded by additional fitness contributions
from the next level up in a hierarchicd structure. Each
corred pair of blocks creaes a new single block for the
next level in the hierarchy. The desirable setting for this
meta-block is determined by its neighbaing meta-block,
and so on, up the hierarchical levels.

The fitnessof a string wsing H-IFF can be defined using
the reaursive function gven below. This function
interprets a string as a binary tree ad reaursively
decompaoses the string into left and right halves. Each

* This variant of H-IFF is equivalent to a hierarchicdly consistent form
of the second Royal Roads function defined in [Forrest & Mitchell
1993].

the left and right halves of B (i.e. B,={b,,..b.},
B.={b,,..,--b}). The length o the string evaluated, n,
must equal 2° where p is an integer (the number of
hierarchical levels).

Some feaures of this apparently smple function shoud
be highlighted. Since bath ores and zeros are rewarded
ead partition contains two equal-fithess competing
schemata. Eadh block-solution, either ones or zeros,
represents a schema that contains one of the two gobal
optima & all-ones or all-zeros. Locd optima in H-IFF
occur when incompatible building-blocks are brough
together. For example, consider “11110000; viewed as
two blocks from the previous level (i.e. “1111 and
“0000) both bocks are good - but when these
incompatible blocks are put together they creae asub-
optimal string that is maximally distant from the next
best stringsi.e. “11111111 and “00000000. (See solid
curve in Figure 3)

Sections of the fitness landscapes for H-IFF and easy variant

— — without competing schemata
P —— with competing schemata
ol = I I I I T i
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Figure 3: Sedions through the H-IFF landscape. The
solid curve shows the regular H-IFF problem (i.e. with
competing bulding-blocks), as per Equation 1 The
dashed curve shows H-IFF withou competing bulding-
blocks (Equation 2. In bah cases the arves ow a
particular sedion through a 64-bit landscgpe starting
from all zeros on the left and ending with al ones.
Spedficdly, they show the fithess of the strings
“000..0", “100..0", “110..0", ..“111..1". This reveds
the local optima in Eg. 1 and the ‘easy’ nature of Eq.2.




However, athoughlocd optima and dobal optima ae
distant in Hamming space they may be dose in
recombination space[Jones 1999, for example, consider
a popdation containing bdh “11110000 and
“00001111 individuals. Thus H-IFF exemplifies a dass
of problems for which recombinative dgorithms are
well-suited. Our previous work [Watson et al, 199§
showed that H-1FF is easy for a GA to solve given that
diversity in the popuation is maintained and genetic
linkage is tight:

- Diversty maintenance methods are aldressd in
[Watson & Pollack 19990, aternative methods are
analyzed in [Watson & Polladk 2004, and in this paper
we will use the diversity maintenance technique we have
found lest so far, which is deterministic crowding
[Mahfoud 1995].

- This paper does not address problems of poa genetic
linkage - all of the following experiments use buil ding-
blocks where the relevant genes are aljacent on the
genome (as defined in Eq.1). It is known that one of the
condtions for succesdul crosover is the tight-linkage of
genes [Altenburg 1993; our experiments here mncern
different aspeds of crosover, as discussed abowve.
However, it is worth nding that athough the
performance of one-point crosover is poa when applied
to a variant of H-IFF that has randam linkage, the
performance of uniform crosover is approximately the
same & this poa level of performance regardiess of
linkage, [Watson et al 1999. Algorithms to addresspoa
linkage are addressed in [Watson & Pollack, 1999a].

Variations and more general forms of HIFF that allow
different aphabets, different numbers of sub-blocks per
block (instead of pairs), unequal fitness cortributions of
competing Hocks, and the onstruction d other
hierarchicdly-consistent building-block functions, are
defined in [Watson & Polladk 1999K. For the purposes
of this paper, the canoricd form given above and ore
variation will be useful. Spedficdly, a variation that
assgns unequal fitness contributions will enable us to
deaeese the strength of competition ketween competing
schematd.(See dashed curve in Figure 3)

The fitnessof a string, f(B), in H-IFF withou competing
building blocks is given by:

o 1, if |B|=1 else,
fg)= 0 IBI+f(B)+f(B), if (i1,
H f(B,) +f(B,), otherwise. Eq. 2

where B, |B|, Band B,are as per Equation 1.

° Two schemata compete to the extent that they are both desirable (have
high fitness contributions), and that the dlele values they spedfy (at
shared loci) disagree In H-IFF competing Hocks are dl loci and
disagree a all of them. Biased H-IFF [Watson & Polladk 19994
controls competition by controlling the relative desirability of these
blocks. Figure 3 shows biased H-IFF where the value of blocks based on
zeros is depressed to zero.

3 EXPERIMENTAL METHODS

For the main comparison d crossover operators we will
use the same underlying GA throughou. H-1FF requires
that the GA does nat converge - if this is alowed, the
GA will become trapped in locd optima just as a hill -
climber would [Watson et a 1998. To prevent this,
ealier work used a resource-based dversity
maintenance technique that required knowledge of the
block structure. Here we ae ale to report that an off-
the-shelf tedhnique, that has no knawledge of the
problem structure, also works very well on H-IFF. This
is deterministic crowding, DC, [MahfoulP95].

3.1 DETERMINISTIC CROWDING (DC)

Determinigtic crowding ogerates on the premise of
restricted competition rather than restricted mating. Any
individual may be recombined with any aher, but an
offspring is likely to replace a individua that is
genatypicdly similar. In fad, competition is restricted to
parents and their own df spring. Restricted competition
asssts in  preventing convergence becaise sub-
popuations that are occupying dfferent niches need na
out perform one-ancther to propagate. However, it does
not prevent them from mating and podwing an
off spring that might be superior. DC applies naturally to
a steady state algorithm (as oppcsed to a generationd
agorithm that produces an entire popuation d off spring
before any replacanents are made). Two individuals are
seleded at randan to be parents. These prodiuce two
offspring. Eadch dffspring competes with ore of the
parents. The competitive pairs of offspring and parents
are chosen so as to minimize the difference between the
offspring and the parents (Figure 4).

= |nitialize population to random strings.
=  Repeat until satisfied:
= Pick two parents, pl1 & p2, at randan
from the population.
=  Produce a pair of offspringl & c2.
= Pair-up ead dfspring with ore parent
according to the pairing rule below.
=  For eah parent/offspring pair, if the
offspring is fitter than the parent then
replace the parent with the offspring.

Pairing rule: if H(plcl)+H(p2,c2) <H(plc2)+H(p2,cl)
then pair p1 with c1, and p2 with c2, else pair p1
with c2, and p2 with c1, where H gives the
genatypic Hamming dstance between two
individuals.

Figure 4: A smple form of a GA using deterministic
crowding as used in our experiments.

3.2 A CROSSOVER RATE FORDC

Usually, crossover in GAs is not applied at every
reproduction bu applied with some probability or
‘crosver rate’. Withou mutation, a reproduction



withou recombination canna crege new schemata -
however, in the reguar GA, it can dupicae whole
individuals. In deterministic crowding this is nat so. A
‘reproduction’” withou recombination has absolutely no
effed on the popdation - individuas canna be
dupicaed since offspring, at most, replace only one
parent. In order to re-introduce a cosover rate we
produwce offspring by recmombination with some
probability, ¢ (c=0.9 in the experiments that foll ow), and
produce two off spring that are both copies of one parent
with probability 1-c. This gives us me rntrol over the
restriction d competition that deterministic crowding
provides.

Note that this dudicaion d individuals does ‘resped’
the schemata provided by a parent and all ows a method
for schemata to be propagated withou disruption even
when using dsrespedful recombination. But it shoud be
clea that this is a different isue from the nature of the
recombination ogerator. It is quite natural for a GA to
dudicae good individuas and the schemata they
contain. But, as Syswerda indicaes, in regard to
recombination operators, we ae not interested in “string
gans’ bu rather the onstruction o new schemata
[Syswerda 1989] which this duplication does not allow.

3.3 DISRESPECTFUL HCT

After the main comparison experiments we will discuss
whether the succesdul operation o disrespedful
recombinationis perhaps smply becaise of its disruptive
properties. That is, the more similar the parents are the
more randam bits are injeded into the offspring. To
investigate whether this kind d convergence ®ntrolled
variation [Eshelman et a 1994 may be resporsible for
the successof the operator we mntrast it with a different
operator. This operator borrows from the “headless
chicken test” of Jones [1999. Jones test is designed to
verify whether the genes supdied by crossover are
equivalent to ‘maao mutations and, acwordingy,
whether the exploration enabled by crossover is akin to
making randam jumps. The difference with ou operator
is that the randam bits are placal exadly where the
parents agree rather than between arbitrary crossover
points. The c@rrespondng ‘disrespedful headless
chicken test’ (disrespeaful HCT) uses the operator in
Figure 5.

a 00011] 101011
b 10101 100110
di srespect ful a?aa? ??bb?b

di srespectful HCT a?aa? ??aa?a

Figure 5. The ‘recombination’ operator used in the
‘disrespedful healless chicken test’. Disrespedful HCT
ignares the aosover point and resolves all alleles that
disagreein favor of parent a. Parent b suppies no genes
but instead is used to ‘focus random mutations.
Spedficdly, all 1 oci where the parents agree aie assgned
random allele values.

4 RESULTSAND DISCUSSION

In the experiments that follow we use a GA with the
following perameters. popuation size 100Q mutation
rate 0, crosver rate 0.9 (see Sedion 32), maximum
evaluations 10°. The seledion and replacanent method
of the deterministic aowding algorithm is detailed in
Figure 4. To measure performance we recorded smply
how many o 30 runsfounda global optimum in a 64-bit
problem, using ead crosover operator. The most
evaluations required by any run that succealed was less
than 604000 — indicating that our evaluation limit was
sufficient.

a) performance without competing schemata

30
25 |
20 +—|
15 +—
10 +—|

# of successful runs

0 f f f |

one-point uniform  disrespectful disrespectful
HCT

b) performance with competing schemata

30
25 4—
20 +—
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10 +—

# of successful runs

5
0 1 1 1 ‘

one-point uniform  disrespectful disrespectful
HCT

Figure 6: Performance of GA using deterministic
crowding and various crosver operators. @)
Performance on the ‘easy’ problem where building
blocks are separable. b) Performance on the standard
H-IFF where blocks compete strondy. A control
experiment using the ‘disrespedful HCT' operator
(Figure 5), will be discussed in Section 4.2).

41 DISCUSSION

The results dow that uniform crosover, which is
respedful of the parents similaritiesis siccesul on the
variant of H-IFF that has no competing schemata. They
also show that disrespedful crossover, that randomizes
the parents smilarities and instead combines their
differences, is siccesgul on the standard H-IFF that has
srongy  competing  bulding-blocks.  One-paint
crosover, that both respeds smilarities and combines
differences is successful at both of these extremes.

We shoud understand why it is that the operators
succeal and fail where they do. Firstly, uniform
crosver: In H-IFF withou competing bulding-blocks



any block foundat lower levels in the hierarchy will be
useful in finding Hocks at higher levels. Thus the
problem has no locd optima (see dashed curve in Figure
3) and provides a gradient towards the global optimum at
al points in the landscgpe. Uniform crossover is
cetainly cepable of solving a problem where the
mutation landscape is this easy.’ However, in H-IFF with
competing bulding-blocks, there ae many locd optima
(2% in fad, [Watson et al 1999H). The distance between
locd optima ad the next-best optima increases
exporentially as hierarchicd levels are ascended - the
seoond tkest optima in the whole problem are 32 lts
different from either global optimum. It is therefore
highly urlikely that the maao-mutations afforded by
uniform crosover will perform a jump o this sze
However, any gven run may be fortunate enough to
avoid this worst-case scenario and ore run was able to
find the optima after all.

Seoondy, disrespedful crosover: We know that
crosover between two individuals sich as “00001111
and “11110000 can prodwce the global optimum at
“11111111 and “00000000. This is the recombination
of low-order schemata to find higher-order schemata that
the buildingblock  hypahesis describes. The
disrespedful feaure of our operator is nat problematic in
these caes s$nce the parents have no dleles in
agreement. Given that the popuation is appropriately
diverse, which evidently it is, such recombinationis able
to escgpe from the locd optima that H-1FF creaes. Such
recombination events exploit the ‘crosover landscape
rather than the mutation landscgpe. But, disrespedful
crosover has evere disadvantages too. It is not able to
succesqully cross “00111111 with “00001111, for
example. Thiswill crede “??711???? where the “?'s are
randamly assgned. So most crossovers will be disastrous
— creaing massve disruption and wselessoff spring — just
the sort of case imagined by the “two pesks make a
valey” perception d crosover mentioned in ou
introduction. But this disruptive aossover still succeels.
Evidently, the seledion o good df spring when they do
ocaur is grongenoughto overcome the disruptive dfeds
of the operator.

Thisis a leson we can take avay: in some caes, what
matters abou a aosover operator is not the likelihood
of succesgul off spring on average but rather its credive
patential. The average offspring wsing uriform crossover
has a much higher fitnessthan the average offspring o
our disruptive operator. But disrespedful crossover still
has the occasional offspring that exploits the
combination d building-blocks. Chen [1999 concurs
that in some drcumstances credive potential is more
important than ‘average expedation’, though ke makes
this point to defend the relatively high dsruption o
uniform crossover compared to one-point crossover.

But why daes disrespedful crossover not succeal onthe
easy problem? As noted, in order for a schemata to be
propagated from a parent to an dofspring undr this

® It is also cepable of solving herder problems where the maao
mutations are useful in escaping local optima.

operator the two parents must disagreeat all loci. Thisis
very unlikely in the eay H-IFF where there ae no
competing bulding-blocks. So, recombination with this
operator, in this problem, is even more disruptive than in
H-1FF with competing Hocks. (In a problem where eat
block has more than ore desirable solution, the condtion
that parents disagree is not so improbable.) Moreover,
the maao-mutations applied by disrespedful crossover
are focused on exadly those parts of the individuals
where they are greel. Since Chen's hypahesis that
schemata common to above average individuals are
above average [Chen 1999 hdlds for this problem, this
disruption is nat at all useful. In fad, on this problem,
there is no wseful variation in the dgorithm at al. Those
individuals sibjed to recombination have good schemata
destroyed (unless the second parent happens to have
complementary zeros, which is highly unlikely), and
those individuals that are not subjed to recombination
(see Section 3.2) are duplicated unchanged.

Finaly, one-point crosover: This has the alvantages of
both preserving similarity and combination. And ore-
point crosover succeals on bdh extremes of the
problem. By separating ou the different aspeds of
recombination in the other operators we now know that
combination is an esential part of the operation d one-
point crosover on H-IFF. We dso know, by the same
reasoning, that preserving similarity is an esential part
of the operation o one-point crossover on the version o
H-IFF without competing building-blocks.

4.2 DISRESPECTFUL HCT RESULTS

Earlier we mentioned that, in addition to combination,
disrespedful crosover also dfers a different kind o
‘maao-mutation’ [Jones 1993 from that offered by
uniform crosover. Spedficdly, whereas uniform
crosover may discover schemata by randomizing genes
that disagree between parents, disrespedful crossover
may discover new schemata by randaomizing genes that
agree between parents (or by combination). Our control
experiment is designed to ascertain whether these maao-
mutations are the source of success for disrespedful
crosover. The disrespedful HCT operator, described in
Sedion 33, separates the maco-mutations from the
combination. Figure 6 includes the results of this
operator. We see that it is not succesful on the eay
problem, and nd succesful onregular H-IFF except in a
few runs. Thus it is the mmbinative feaure of
disrespedful crossover that is resporsible for successin
the main experiments.

43 MACRO-MUTATION AND DIVERSITY

However, there is an dternative view to the maao-
mutations suppdied by dsrespedful crossover.
Spedficdly, the more simil ar parents are on average, the
more mutation is applied - this makes the operator a
form of “convergence ontrolled variation” [Eshelman et
a 1994. Moreover, this mutation is direded spedficdly
at those loci where @mnwvergence is drongest. We might
cdl it “conwergence sensitive maao-mutation’. We



know from the previous dion that this feaure done is
insufficient to solve H-1FF (combinationis also required)
but it does have patential as a diversity maintenance
technique.

In the @&ove eperiments we used deterministic
crowding to maintain diversity — previous work showed
that the regular GA (with ore-point or uniform
crosover) canna solve H-IFF withou a diversity
maintenance method But, here we tried a GA using
disrespedful crosover on a steady state GA withou
deterministic aowding a any aher form of diversity
maintenance. We nealed to adjust a few parameters
(tournament size 4 (mating kest two and repladng
worst), crossover rate 0.95), but to our own surprise, it
worked. All 30 runs were successful.

This operator has the desirable property that any
schemata that become too common in the popuation are
penalized. But the dfed is extreme; a schema can orly
possbly survive if there is sme other schema in the
popuation that disagrees with the first at all loci. Thus
the operator does not work when applied to the eay
problem since there is only onre type of schemata that is
desirable (no runs were succesgul). So, athoughit was
succesgul at maintaining dversity in the standard H-1FF,
it seems unlikely that disrespeaful crosover could be
used as a serious diversity maintenance technique. In the
meantime, it makes an interesting side-effect.

44  CAVEATS

We shoudd emphasize that athough the results in
Figue5 sean ‘clea cut’, different choices in the
parameters of the experimental set-up produce different
results. For example, uniform crosver succeeals on
H-1FF with competing bulding-blocks if the values of
competing Hocks are imbalanced — H-IFF bias, for
biases lessthan abou 0.8 [Watson & Pollack 19994, are
solvable. In this case uniform crosover does not need to
perform the cmbination that one-point (and
disrespedful) crosover affords snce the distances
between locd optima and rext-best optima ae reduced.
On the other hand, disrespedful crosover (with or
withou deterministic crowding) can succeal onthe eay
verson d the problem if we reintroduce a little
additional mutation (which was excluded from the &owve
experiments for clarity). Thus, al agorithms can solve
the eay problem (when wsing additional mutation), but
only agorithms with combination (i.e. one-point and
disrespectful) can solve the standardRf.

Also, thus far, we have only talked abou whether an
agorithm succesled o not, and nd the time to
completion. Table 1 shows the average number of
evaluations required to find the global optima in those
agorithms that succeeled reliably. We see that
disrespedful crossover on H-IFF takes abou 13 times
longer to succeal than uriform onthe eay problem, and
gtill more than 9 times longer than ore-point crossover
compared on equal problems.

Most importantly, the relevance of these results (as for
any) depends on the nature of the problem at hand. Here
we have only examined two variants of one problem.
Whether combination a maao-mutations are required in
a given problem isto be judged case by case. However,
it is notable that the dove experiments indicate that the
utility of uniform crosover is best on the variant that is
separable, and that separability is a limitation that is
common to problems in the GA literature [Whitley
1995. In any case, it only requires one eample to
disprove the nation that preserving common schemata is
theonly ‘source of power’ in recombination.

‘easy’ H-IFH H-IFF
one-point 26k 40k
uniform 28k -
disrespectful - 366k
disrespectful HCT) - -
Disrespectful w/o crowding - 127k

Table 1: Average number of evaluations to find
optimum on runs which were succesful. The three
operators and the disrespedful HCT are shown (with
deterministic aowding), and dsrespedful crosover is
also shown withou deterministic crowding. Averages are

shown for those algorithms that were reliably successful.

5 CONCLUSIONS

The satus of the buildingblock hypahesis is
controversial — some believe that the cmbination o
low-order building-blocks to find hgher-order building-
blocks does not play a significant role in the operation o
the GA. This view is typified by ‘recombination
operators that do nd permit combination, such as
uniform crosver. Indeed, there is considerable
evidence that many o the problems used in the GA
literature, designed to test the operation d the GA, do
nat require wmbination (for example, [Mitchell et al
1992 Syswerda 1989 Jones 1995). It is also widely
believed that disruption caused by mating individuals
that are too dssmilar is best avoided. Thus, it may na
be wise to assume that combination is required, and it
may be wise to exped crosover operators that preserve
the similarity of parents to be preferable. Chen is
undouhedly correa that the heurigtic of ‘common
schemata being ‘good schemata’ can be a valuable
method for focusing variation on inferior parts of the
genatype. And, Syswerda is corred that we might prefer
an operator like uniform crosover if we do nd know
that genetic linkage is tight. However, we shodd na
alow such wisdom to become dogma. The value of an
operator, or any asped of an algorithm, is condtioned on
the problems to which it is applied.

In this paper we have separated the simil arity preserving
property of recombination from the mbination
property. For this purpose (and for this purpaose only), we
introduced a new crosover operator that destroys



schemata cwmmon to bah parents. Using this and
uniform crosover we showed that preserving schemata
common to the parents is not sufficient to solve a
particular building-block problem. Whereas,
combination is aifficient, despite the wnsiderable
disruption that this operator causes. However, ead
operator has its own niche. In a problem that shoud be
easy— uniform succeeds but disrespectful fails.

We dso showed that the maaco-mutations afforded by
both uriform and dsrespedful crossover have their
limitations (whether the mutations are ‘inside
(disrespedful HCT) or ‘outsde’ (uniform) the
similarities of the parents). Neither is sifficient to solve
both variants of the problem.

One-point crossover, however, does sicceal on bdh
problems, and from our explorations we have a teaer
picture of the different charaderistics that are & work in
this operator.
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