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Abstract

When using an automatic discovery method
to find a good strategy in a game, we hope
to find one that performs well against a
wide variety of opponents. An appealing no-
tion in the use of evolutionary algorithms
to coevolve strategies is that the popula-
tion represents a set of different strategies
against which a player must do well. Im-
plicit here is the idea that different play-
ers represent different “dimensions” of the
domain, and being a robust player means
being good in many (preferably all) dimen-
sions of the game. Pareto coevolution makes
this idea of “players as dimensions” explicit.
By explicitly treating each player as a di-
mension, or objective, we may then use es-
tablished multi-objective optimization tech-
niques to find robust strategies. In this pa-
per, we apply Pareto coevolution to Texas
Hold’em poker, a complex real-world game
of imperfect information. The performance
of our Pareto coevolution algorithm is com-
pared with that of a conventional genetic al-
gorithm and shown to be promising.

1 INTRODUCTION

One of the inherent problems with learning game
strategies through self-play is a tendency for such
strategies to be brittle—to be over-specialised to a
particular area of strategy space—and to fail to find
robust, general strategies (see, e.g., Pollack & Blair,
1998, for discussion). The potential for strategies to
have intransitive superiority relationships is an impor-
tant key for understanding why this might happen.
That is, although some player A might be beaten by
some other player B, and B may in turn be beaten
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by C, it may not be the case that C beats A (Cliff &
Miller, 1995). The existence of such intransitive supe-
riority relationships can mean that although a search
method persistently finds strategies that are better
than the last strategy, it fails to find a strategy that is
good in general. Intransitive superiority relationships
suggest that a problem domain is multi-dimensional,
in the sense that being good against one strategy does
not necessarily mean that you are good against an-
other (Watson and Pollack, this volume).

An appealing notion in the use of evolutionary algo-
rithms to coevolve strategies is that the population
represents a set of different strategies against which a
player must do well. Implicit here is the idea that
different players represent different “dimensions” of
the domain, and being a robust player means being
good in many (preferably all) dimensions of the game.
However, the idea that players represent dimensions
of the game remains implicit in standard coevolution-
ary algorithms. Pareto coevolution makes the con-
cept of “players as dimensions” explicit. By explic-
itly treating each player as a dimension, or objective,
we may then apply established multi-objective opti-
mization techniques—in particular, principles such as
Pareto dominance—to find robust strategies. This
may help to prevent the effects of intransitive superior-
ity from interfering with the discovery of good general
solutions, because multi-objective optimization pro-
motes a set of players with a different balance of abil-
ities rather than promoting the single best-on-average
strategy. Pareto coevolution was explored by Wat-
son and Pollack (2000), and follows from work relat-
ing coevolution and Pareto dominance (Ficici & Pol-
lack, 2000). Pareto coevolution is also developed in
the domain of the cellular automata majority problem
by Ficici and Pollack (2001). In this paper, we apply
Pareto coevolution to Texas Hold’em poker.
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Figure 1: Solution points for a hypothetical car design
problem, in which we want to maximize speed and
minimize cost. The Pareto-optimal set is indicated.

1.1 PARETO SELECTION AND GAMES

A Pareto-optimal solution is one in which none of the
relevant measurements or dimensions of quality or per-
formance can be improved without reducing perfor-
mance on one or more of the other dimensions. For
example, if we were designing a car, and our goals
were low cost and a high top speed, there might be a
Pareto-optimal solution at $20,000 and 120 mph. This
means that 120 mph is the fastest you can go for that
price, and that $20,000 is the cheapest you can pay for
that speed. An alternative design with the same price
but a top speed of only 110 mph would clearly be infe-
rior. However, there will almost always be more than
one solution in the Pareto-optimal set of best possible
compromises (see Figure 1). Perhaps there are also
Pareto-optimal design possibilities at $25,000 and 130
mph, and at $15,000 and 100 mph. The spirit of the
Pareto approach is not to somehow convert dimensions
like speed and cost into a common currency in order
to come up with the one true optimum, but to find all
members of the Pareto-optimal set so that a human
decision-maker, or some other method, can be allowed
to choose between them.

Within the field of evolutionary computation, various
methods of approximating the Pareto-optimal set have
been proposed as tools for multi-objective optimiza-
tion (for reviews see, e.g., Fonseca & Fleming, 1995;
Horn, 1997). The details differ, but, in essence, Pareto
dominance is used as a selection criterion. Candidate
solution A Pareto-dominates solution B if A is at least
as good as B on all dimensions, and better than B on
one or more. Pareto selection involves choosing the
non-dominated solutions for reproduction.

Pareto selection is typically carried out with respect to
a small number of dimensions, as in the car example

above. This paper seeks to apply Pareto selection to
the domain of games (von Neumann & Morgenstern,
1953) by using each player in an evolving population
as a dimension, or objective, to be optimized—hence,
Pareto coevolution.

Given a particular game, and a way of representing
strategies in that game, we could list every possible
strategy. We could also observe the performance of
each strategy against every other, and the matrix so
derived would allow us to see that some strategies
Pareto-dominate others, e.g., that A performs as well
as B when playing C, D, and E, and is better than
B when playing F. We could then spell out the mem-
bership of the Pareto-optimal set. It is important to
realize that the set might include surprising members:
perhaps a strategy that does very poorly on average
would nevertheless be included because of its excep-
tional performance against just one opponent.

The brute-force approach of calculating a performance
matrix of all-against-all will work for a sufficiently sim-
ple game with a small number of possible strategies,
but it obviously will not be feasible for games of any
complexity. The size of the performance matrix will
be equal to the number of possible strategies squared,
and reliably calculating each entry in the matrix will
require many trials if the game includes a stochastic
element.

We have utilized a population-based coevolutionary
approach, in which individual strategies from a popu-
lation of modest size are selected at random to com-
pete against each other for a number of trials. The
accumulated data from many of these trials can be
seen as a noisy, partial window onto the true per-
formance matrix. Non-dominated strategies are pre-
served in a Pareto front, and novel strategies are gen-
erated through sexual reproduction of strategies in the
front. In this way we hoped that our population would
come to approximate the true Pareto-optimal set, and
would provide robust general strategies.

1.2 HOLD’EM POKER AS A TEST CASE

To provide a convincing test of the hypothesis that
Pareto coevolution can be used to find robust strate-
gies, we wanted to avoid toy problems in favour of a
real game. We have chosen poker, a card game of some
depth in which a wide range of strategies and skill lev-
els are exhibited by human players.

The specific poker variant we used was limit Texas
Hold’em, one of the most popular versions of poker in
modern casinos. The popularity of Hold’em must be
partly due to the balance between public and private



information in the game, which leaves a lot of room for
convincing bluffs. A game of Texas Hold’em typically
involves eight to ten players, and each complete hand
has the following four-round structure.

The pre-flop: each player is dealt two cards face
down. These are hole cards, or private cards. The
player to the dealer’s left makes a forced bet called
the small blind, equal to one chip in our case. The
next player must bet the big blind, which is equal
to two chips. The third and subsequent players
must then call (match the bet), raise (increase
the bet) or fold (throw in their cards and forfeit
all interest in the pot). As this is a limit game,
any raises must be exactly two chips at this stage.
In addition, no more than three raises are allowed
in this or any other round of betting, unless there
are only two players left, in which case raising can
continue until someone runs out of chips.

The flop: when the previous round of betting is com-
plete (all players have either called or folded),
three cards are “flopped” face up in the middle
of the table. These are community cards, and are
available to all players. By mentally combining
the community cards with their hole cards, play-
ers can now form a 5-card poker hand, such as two
pair, or a flush. There is another round of betting,
again starting with the player to the dealer’s left.
Players can check (decline to bet if no-one else has
bet), call, raise by two chips only, or fold.

The turn: a fourth community card is turned face
up, and there is another round of betting. Note
that even though six cards are now available, play-
ers can only make five-card poker hands. The
stakes increase now, and all raises must be four
chips.

The river: a fifth community card is dealt face up,
and there is a final round of betting, with four-
chip raises. When the round of betting is com-
plete, all players who still have an interest in the
pot compare their hands, and the player with the
strongest hand! takes the pot.

The art of the game consists of such points as knowing
when your cards are likely to be strongest, knowing
whether it’s worth staying in the pot to improve your
hand with subsequent community cards, reading the
likely strength of your opponents’ hands through their

!Poker hands, from weakest to strongest, are: high card,
a pair, two pair, three of a kind, a straight, a flush, a full
house, four of a kind, and a straight flush.

patterns of betting, and of course effective bluffing (see
Sklansky, 1999, for a more authoritative discussion).

2 METHODS

2.1 REPRESENTING POKER
STRATEGIES

Our primary goal was to test the effectiveness of our
Pareto coevolution algorithm, not to evolve world-class
poker strategies. We have therefore used an econom-
ical representation scheme that is not able to capture
many of the subtleties of expert-level poker. In decid-
ing whether to fold, call, or raise, our strategies attend
to the strength of their hand at each point in the game.
They do not pay any attention to the behaviour of
other players except insofar as they are aware of what
the current bet is, and may choose to fold because the
stakes have become too high for them.

The strategy representation begins with two proba-
bility values (real numbers between zero and one in-
clusive). The first gives the probability with which
a player will bluff (i.e., pretend to have very strong
cards) on any given hand. The second gives the prob-
ability with which a player will check-raise when given
the opportunity—this is a deceptive play in which a
player bets nothing, indicating weakness, and then
raises when the bet comes around again.

Next there are 24 integers in groups of six, describing
strategy for each of the four betting rounds (see sec-
tion 1.2). Two integers describe the minimum cards
that a player wants at this stage in order to remain in
the hand, e.g., a pair of aces, three sevens, or a king-
high flush. Another two integers describe the cards
that a player would regard as a strong hand. One in-
teger describes the amount that a player would prefer
to bet at this stage, and a final integer gives the maxi-
mum amount a player will bet. If players have less than
their minimum requirements, they will check if possi-
ble or fold if asked to bet. If players have equalled or
exceeded their minimum requirements, they will raise
until the betting reaches their preferred level. If bet-
ting goes higher than their preferred level, they will
call until their maximum bet is exceeded, and then
they will fold. But if their cards qualify as strong,
they will call any bet.

Finally, four groups of four binary values modify the
player’s behaviour on each betting round. One bit
indicates whether or not the player will ignore their
normal preferred and maximum bets, and instead bet
as much as they possibly can, if their cards qualify
as strong. A second bit determines whether or not the



player is willing to stay in the hand if their cards are no
better than what is showing on the community cards
(for example, if the player holds ace-king, and the flop
is three queens, then the player’s hand is three queens,
but that hand is available to all the other players too).
A third and a fourth bit indicate a willingness to stay
in the hand if one card short of a straight or a flush
respectively. (Note that the second bit does not apply
to the pre-flop round, and the third and fourth bits do
not apply to the pre-flop round or the river round.)

Some of the features that a more sophisticated strat-
egy representation might cover include: whether or not
the two pre-flop cards are the same suit (for possible
flushes) or close in value (for possible straights), the
player’s position in the betting order, whether a player
has paired the top, middle or bottom pair on the flop,
the relative size of the player’s stack of chips, whether
the size of the pot justifies a risky bet, and how often
other players are seen to fold early or to bluff. Never-
theless, as is apparent to us from playing against var-
ious evolved and hand-coded strategies,? the current
strategy representation is adequate to produce poker
strategies ranging from the very bad to the reasonably
good.

2.2 A SIMPLE PARETO COEVOLUTION
ALGORITHM

We began with a population of 100 random poker
strategies. Ten strategies were selected at random to
make up a table, and a game of 50 hands of poker
was played out. Two hundred such games were played
per generation, which meant that each strategy was
assessed over an average of 1000 hands, and had a
chance to play against most of the other strategies in
the population.

Results from each of the 10,000 hands of poker played
in a generation were collated in a matrix showing who
had won or lost chips to whom. Pairwise comparisons
were conducted on this matrix in order to identify
Pareto-dominated strategies. Non-dominated strate-
gies were maintained in a Pareto front, and the re-
maining slots in the population were filled through
sexual reproduction of randomly chosen members of
the Pareto front. Reproduction included multi-point
crossover and mutation as in a standard genetic algo-
rithm (GA).? After the population had been restocked,

2Code (in Q) for playing poker against evolved
and hand-coded strategies is available on the web at
http://www.comp.leeds.ac.uk/jasonn/Research/Pareto/ .
Code for running our Pareto selection algorithm is also
available.

3There were 37 genetic loci, the crossover rate was 0.1

the win-lose matrix was wiped clean, and the cycle be-
gan again.

One problem that became apparent in trial runs was
that the entire population, or very close to it, would of-
ten be included in the Pareto front. This was presum-
ably due in part to noise in our evaluation process—
even over 1000 hands, the luck of the deal had a sig-
nificant influence on success, making the true worth of
a strategy hard to discern. Furthermore, each strat-
egy could expect only about 100 hands against each
opponent, and sometimes did not get to play against
a specific opponent at all.

In order to keep exploring new regions in strategy
space, we needed to limit the size of the Pareto front.
We set the maximum size of the front at 50 strategies,
which meant that up to half the population was pre-
serving accumulated wisdom, while the other half was
exploring new possibilities. But in the event that more
than 50 strategies were non-dominated at the end of
a generation’s 10,000 hands, we needed a principled
way of deciding which strategies would be maintained
in the front and which would be discarded. In de-
vising a metric for this purpose, we wanted to stay
as close as possible to the Pareto selection ideal, i.e.,
that one should not assume that the dimensions of
success are equally weighted. Strictly speaking, the
method we devised does violate this—and we suspect
that any method for keeping less than the full Pareto
front must—but it does not use an average or sum
of scores across different dimensions. Instead we have
used a count on the number of dimensions in which a
player excels.

Our method was to eliminate those strategies that
were “nearly dominated,” until our front size was less
than or equal to 50. A strategy is nearly dominated
if the number of opponents that it is superior to, with
respect to its best competitor, is low. The best com-
petitor is defined as the strategy that minimizes this
number of opponents. To elaborate: in determining
whether a strategy A is Pareto-dominated by B, or
vice versa, we look at the scores of A and B against all
other strategies. We count the number of strategies, or
dimensions, for which A scores higher than B. If this
count is zero, then A is dominated by B, and will not
be a member of the Pareto front in any event—there is

per locus, and the mutation rate was 0.02 per locus. For
the genetic parameters that were real or integer values, mu-
tation was implemented as a small gaussian perturbation,
with a mean of zero and a standard deviation of 0.05, 1,
or 2 for probabilities, hand rankings, and betting amounts
respectively (see section 2.1 for details). Ten percent of
mutations were denoted as catastrophic and resulted in a
new random value for that parameter.



nothing that A can do that B cannot do better. If this
count is greater than zero, then A is not dominated by
B. If we look at these counts for A compared with all
other strategies, the minimum count gives an indica-
tion of how close A came to being dominated. In order
to limit the size of the front, we throw out strategies
for which this count was equal to one, then two, then
three, etc., until the membership of the Pareto front
is less than or equal to 50.

In summary, our implementation of Pareto coevolu-
tion involved selection based on non-dominance, given
the noisy, partial window onto the true payoff ma-
trix that is obtained from the results of a generation’s
10,000 poker hands. We also developed a heuristic
for limiting the size of the Pareto front. However,
there were potential problems with our procedure. Al-
though a strategy that is dominated with respect to
the current population must also be dominated with
respect to all possible strategies, the converse is not
true (Schaffer, 1985). So one strategy might remain
in our Pareto front despite being dominated by an-
other, as yet unseen (or already discarded). Noise
in the evaluation process, combined with our elimina-
tion heuristic, might prevent non-dominated strategies
from being recognized as such in the first place. An-
other possible complication is perhaps specific to the
game of poker: success is measured in the context of
the other players at a table, but this is not explicitly
controlled for. Strategy A might tend to do very well
against strategy B when matched directly, but not at
a table where C and D were present.

2.3 MEASURING EFFECTIVENESS OF
THE ALGORITHM

In order to determine the effectiveness of our Pareto
coevolution procedure, we compared its performance
with that of a regular coevolutionary GA. This merely
provides a baseline performance measure to give us an
indication of whether Pareto coevolution can improve
performance and robustness of evolved strategies, com-
pared to regular coevolution where fitness is based on
an average score over opponents in the population.

The parameters for the GA (i.e., population size, num-
ber of hands played per generation, mutation rate,
crossover rate, etc.) were the same as those used for
the Pareto coevolution algorithm. Strategies were se-
lected for reproduction based on their profit or loss af-
ter 10,000 hands: specifically, the scores were normal-
ized with the minimum set equal to zero, and roulette-
wheel selection applied to the normalized scores.

Both algorithms were run 20 times for 100 generations
each time. We can view the comparison of the two

algorithms as a test of which one can produce the best
strategies given a million hands (100 generations x
10,000 hands) worth of information.

In deciding which of the two algorithms had produced
better results, we were faced with a somewhat para-
doxical problem of measurement. Precisely because
the fitness of a strategy cannot be given in isolation,
but can only be measured with respect to a particu-
lar opponent or set of opponents, it is difficult for us
to provide a single, general measure of the strength
of the evolved strategies. The familiar Red Queen ef-
fect means that it will not help to look at performance
against the other strategies in the population, as the
zero-sum nature of poker ensures that mean fitness will
always be zero.

We decided to construct two sets of five hand-coded
reference strategies for the purposes of comparison, us-
ing the same representational scheme as the evolving
populations (see section 2.1). These reference strate-
gies are not claimed to be in any way optimal; they
merely represent some typical, more-or-less reasonable
playing styles. For example, we constructed several
conservative strategies, that would not bet unless they
had quite strong cards. Some of the strategies were de-
ceptive, either because of frequent bluffing, or through
“slowplaying,” i.e., hiding the strength of one’s cards
until late in the hand. Other strategies tended to call
all bets as long as they held a reasonable hand.

Assessment of the strategies evolved under our two
different selection regimes was carried out by having
each strategy in the population play alone against a
table stocked with reference strategies, for a fixed se-
quence of 1000 hands. The overall profit or loss of
each evolved strategy was recorded. The same ran-
dom seed was used to deal out the same sequence of
cards in every assessment run, in an attempt to reduce
some of the noise inherent in the process. The refer-
ence strategies were divided into an alpha and a beta
group, and assessment was carried out against each of
these groups. Note that the ten reference strategies
were simply sorted at random into the two assessment
groups; there was no intention that the alpha group
should be superior to the beta group, for instance. We
wanted to be sure that we had not accidentally con-
structed an unusual or eccentric reference point, and
comparison of results against two distinct groups gave
us some some insurance against this possibility.

It is important to be clear about what good perfor-
mance against these two reference groups might mean.
Strategies under both selection regimes never encoun-
tered any of the reference strategies during the course
of evolution. Strategies were selected solely for their
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Figure 2: Mean performance (+1 standard error) of
evolved strategies in 1000 hands of play against the al-
pha and beta reference groups; strategies evolved with
a coevolutionary GA compared with strategies evolved
under Pareto coevolution. Results summarised across
20 runs in each case.

ability to do well against other members of their pop-
ulation, either in the Pareto sense or in the conven-
tional sense of having a high average score. If they
managed to do well against an arbitrary set of hand-
coded strategies, that gives us some indication that
they would do well against a wide range of strategies,
i.e., that they are robust and have not adapted to their
conspecifics in an overly brittle manner.

3 RESULTS

Figure 2 shows that after 100 generations of evolution,
strategies evolved under Pareto selection had a higher
mean performance against both of the reference groups
than did the strategies evolved using a conventional
GA. As the standard error bars indicate, this difference
is more pronounced in performance against the alpha
group.

Figure 2 also indicates that the alpha reference group
was significantly harder to beat than the beta group—
both strategies lose to the former and win from the
latter on average. This difference was not intended,
but the fact that there is no evidence of a strong in-
teraction between selection regime and reference group

performance (i.e., the two lines in Figure 2 are roughly
parallel) is a reassuring indicator that the two refer-
ence groups are measuring something like general abil-
ity.

If we look in detail at the evolved strategies across the
two selection regimes, the most striking difference is
that the Pareto strategies bluffed less often on average
(20% vs. 36%). This fact alone explains a lot of the
difference in success between the two conditions: in
those populations where a high level of bluffing ob-
tained, performance against the reference strategies
was always very poor. This is because the only type
of bluffing available to these strategies was a simple-
minded approach in which they pretended they had a
royal flush right from the beginning of the hand and
never gave up their bluff no matter how determined
the opposition. The Pareto selection process seems to
have made it easier for the population to discover the
folly of this sort of bluffing.

There were other differences: the Pareto strategies had
lower standards for staying in at the preflop and at
the river. They tended to bet more, and were more
likely to bet as much as possible if they had strong
cards (except on the final round of betting). They
were less likely to stay in the hand if they weren’t
beating the community cards, and were more likely
to wait for straights and flushes if they were one card
short. Readers who play poker may be interested in
seeing a complete strategy description. The following
is a high-performing evolved strategy from Pareto run
17, in which the average wins were 2009 and 5267 chips
against the alpha and beta groups respectively.

e Never bluff, and check-raise 11% of the time.

e At the pre-flop stage, bet as much as possible if
you have an ace or a pair—otherwise fold.

e On the flop, stay in as long as you are beating
the community cards. If you are one short of a
straight or a flush, stay in in any event. Try to
bet just two chips, but call bets up to 42 chips. If
you have a straight or better, call any bet.

e On the turn, keep waiting for a straight or a flush,
but otherwise fold if you have less than a pair
of sixes or if you are not beating the community
cards. If you stay in, try to bet 6 but call bets
up to 59 chips. If you have two pair, with the top
pair sixes or better, bet as much as you can.

e On the river, if you have a pair of aces or bet-
ter, then bet as much as possible. Otherwise fold,
and definitely fold if your two aces are community
cards.
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Figure 3: Mean performance of evolving strategies in
1000 hands of play against the alpha and beta refer-
ence groups, for both Pareto and standard coevolu-
tion, over 500 generations. Data taken from runs with
a common random seed value of zero.

Some peculiarities were noted regarding the Pareto
selection condition. The Pareto front, of maximum
size 50, was always full, which means that some non-
dominated strategies were being eliminated in every
generation. The mean age of strategies in the Pareto
front was approximately two generations, and the me-
dian age was always one generation. This suggests a
front made up of mostly very young strategies with a
few older ones, which is not unexpected, but the mean
age of only two generations indicates an extremely
rapid turnover of strategies. When Pareto populations
were examined at the end of a run, they were not as
diverse as we would have hoped. Again, this was not a
complete surprise, as reproduction with crossover was
employed, but it indicates that the Pareto front has
not been completely successful in preserving a range of
very different strategies that are non-dominated with
respect to each other.

We looked briefly at what happened when evolution
continued for more than 100 generations, and found
that in many cases performance against the reference
groups actually worsened. Figure 3 gives an exam-
ple of this, with mean performance data over time for
an extended version of run zero, showing both Pareto
and standard coevolution against the two reference
groups. The Pareto-evolved players are declining in
performance and moving closer to zero profit, while the
GA strategies are making significant losses but with no
clear trend up or down.

4 CONCLUSIONS

Our Pareto coevolution algorithm was superior to
a GA at finding robust Texas Hold’em strategies
within 100 generations. This fact should not be over-
interpreted: clearly, we worked with only one game,
two small groups of arbitrary reference strategies, and
a particular set of parameter values. Nevertheless, our
finding does show that Pareto coevolution of strategies
in games can work in principle and is an idea worth
exploring.

The algorithms we have presented for selecting non-
dominated strategies and for discarding excess strate-
gies from the Pareto front could probably be improved
upon so as to use the multi-dimensional information
from the games played more efficiently and effectively.
Our current method maintains only a rough approx-
imation to the Pareto front as compared to existing
multi-objective optimization methods, because of the
unusually high number of objectives we are using.
However, in regular coevolution the multidimensional
information is discarded completely, in favor of a single
“performance on average” dimension. To put it an-
other way, fitness evaluation and selection are noisy,
incomplete processes under both selection regimes—
noisy because of the stochastic element, and incom-
plete in the sense that we cannot observe performance
against all possible opponents. But in Pareto coevolu-
tion, we are trying to use the information gained from
10,000 hands of poker more intelligently: instead of
simply taking an average, we use the specifics of who
beat who, and we remove the unwarranted assumption
that every other strategy is equally worth beating.

The long term behaviour shown in Figure 3 is some-
what disturbing. It seems that our Pareto-selected
strategies cannot hold onto their collective wisdom
over time (although the same effect was observed with
the more successful GA-evolved strategies). This ef-
fect may be due to the population chasing its own tail
into eccentric regions of the strategy space; if this is
the case, then we need to refine our coevolution algo-
rithm. But note that we are not selecting for maxi-
mization of scores against the reference strategies—we
are selecting for not being dominated by anyone else
in the population. It is an open question as to whether
the long term reduction in success apparent in Figure 3
is a sign of “population senility.” It may represent a
movement towards careful compromise strategies that
do not make spectacular wins, but instead make mod-
est profits against a wide range of opponents, and are
careful not to lose to anyone.

This paper is the preliminary exploration of an idea,



and so we have many questions for future work. One
of the most pressing is about the explore-exploit bal-
ance in our algorithm: is 50% of the population a rea-
sonable size for the ongoing Pareto front? Would we
benefit from having a “genetic freezer” for storing past
champion strategies, and then re-inserting them into
the front at regular intervals? How big is the true
Pareto-optimal set likely to be in a game like poker,
and what chance do we have of getting a reasonable
approximation to it with our method?

We also want to look at reproduction of Pareto-
selected strategies. In the current paper we have used
standard sexual reproduction, partly to facilitate com-
parison with the GA. It seems worth exploring asexual
reproduction, or at least much lower levels of crossover,
to see if we can avoid the unfortunate degree of con-
vergence reported in section 3. It would be interesting
to see whether asexual reproduction also resulted in
an increase in the mean age of in the Pareto front.

Once we have refined our Pareto coevolution algo-
rithm, it would be sensible to test it against more than
just a standard GA. If we view the problem as how
to learn the most you can from one million hands of
poker, then we should ultimately be testing Pareto co-
evolution against a range of established evolutionary
computation and machine learning techniques. In the
meantime, our experiments have provided a simple il-
lustration of Pareto coevolution, and begun to explore
some of the issues involved.
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