
Pareto Optimality in Coevolutionary Learning

Sevan G. Ficici and Jordan B. Pollack

DEMO Lab—Department of Computer Science
Brandeis University, Waltham Massachusetts 02454 USA

www.demo.cs.brandeis.edu

Abstract. We develop a novel coevolutionary algorithm based upon the
concept of Pareto optimality. The Pareto criterion is core to conventional
multi-objective optimization (MOO) algorithms. We can think of agents
in a coevolutionary system as performing MOO, as well: An agent in-
teracts with many other agents, each of which can be regarded as an
objective for optimization. We adapt the Pareto concept to allow agents
to follow gradient and create gradient for others to follow, such that co-
evolutionary learning succeeds. We demonstrate our Pareto coevolution
methodology with the majority function, a density classification task for
cellular automata.

1 Introduction

The challenge facing an agent situated in a coevolutionary domain can be de-
scribed as a form of multi-objective optimization (MOO) where every other
agent encountered constitutes an objective to be optimized. That the techniques
of conventional MOO, most notably those incorporating the notion of Pareto op-
timality, may be usefully applied to coevolution has recently been suggested [4,
20], but has yet to be deeply explored. This paper begins our investigation into
the connection between coevolution and multi-objective optimization, paying
particular attention to how the Pareto optimality concept may lead to meth-
ods that address issues unique to coevolution. (See Noble and Watson [13] for
another example of a “first-generation” Pareto coevolutionary algorithm.)

All coevolutionary systems involve concurrent processes of gradient creation
and gradient following. The central themes of coevolution research concern the
ways in which these processes interact to dynamically modify the scope of in-
teractions that occur between coevolving entities. Hillis’ [6] seminal work on
coevolving a population of sorting networks against a population of input vec-
tors gives a compelling illustration of how these processes may interact. Hillis
recognizes that the feedback loops between the processes of gradient creation and
gradient following can behave like an optimizer with a dynamically adjustable
evaluation function; by judiciously selecting the range of test cases applied to the
sorting networks, coevolution can make more effective use of finite computational
resources to achieve better results.

Nevertheless, the ability to dynamically alter a learning landscape does not
by itself guarantee that coevolution will lead to effective learning. Indeed, con-
ventional coevolutionary methods are known frequently to exhibit a number of

irksome modes of behavior that hinder learning. Intransitive superiority rela-
tionships [3] and mediocre-stable states [17] are two examples.

Our experiments involve the coevolution between cellular automata (CA)
rules for a density classification task (the majority function) and initial condition
densities. We choose this problem because an extensive literature on the majority
function exists (e.g., [14, 21, 1, 11, 12]) and the best rules currently known derive
from coevolution (by Juillé and Pollack, with success rates of 85.1%, 86.0% [10],
and 86.3% [9]), allowing us to more meaningfully ascertain the significance of
our results. We are able to discover rules with a competitive success rate of
84.0%. While not superior to the results of Juillé and Pollack, our rule is signif-
icantly better than all results published elsewhere, and we anticipate improved
results, as we discuss below. More importantly, we argue that our method offers
a potentially more general and comprehensive approach towards coevolution.

This paper is organized as follows: Section 2 details how we employ the
Pareto optimality criterion in our coevolutionary algorithm; Section 3 describes
the majority function and how we deploy our Pareto coevolutionary algorithm
to work on it; Section 4 gives additional details of our experiment setup; Section
5 reviews results; Section 6 discusses plans for new experiments and concludes.

2 Pareto Coevolution Methodology

2.1 Learning from Teaching

We equate the processes of gradient following and gradient creation, discussed
above, with the roles of learning and teaching, respectively. Every agent with
which a learner interacts is a teacher, every agent with which a teacher interacts
is a learner. An agent in a coevolutionary framework usually, though not always,
plays both roles simultaneously; and, when both roles are played by an agent,
they are usually not performed with equal success. Our approach to coevolution
considers the roles of learning and teaching to be orthogonal.

The only evidence that a learner has to indicate success at following gradient
comes from achieving good outcomes (high payoffs) through interaction with
agents (teachers). But, the learning gradient is typically of very high dimension
in coevolution, since each agent with which a learner can interact represents a
dimension to be optimized. Therefore, some principled method of integrating this
space is required, and this is the reason we look towards the Pareto optimality
concept for help.

We define the role of the teacher to be one that is awarded fitness for pro-
viding gradient for learners. But, what evidence can we gather to infer success
at this job? We define the learnability of a teacher, with respect to a particu-
lar learner, to be the likelihood that the learner can be transformed, over some
number of variation steps, to become competent (or more competent) at the task
posed by the teacher. (Note that learnability becomes sensitive to the state of
an entire population if recombinative methods are used in variation.) Thus, the
task posed by a teacher is unlikely to be learned if the learner is too remote from

regions in variation space where learners are competent at the task—the teacher
is “too difficult.” Teachers that are completely mastered by a learner also have
a low learnability in the sense that the learner has no chance of improving its
performance on the task, since it is already perfect.

Rather than try to measure teacher learnability directly, our approach is to
discover teachers that can demonstrate gaps in learner competence—i.e., show
one learner to be more proficient than another at a particular task. We operate
on the intuition that teachers that fill competence gaps are likely to be learn-
able because they expose and explore pre-existing gradients of learner ability in
different dimensions of behavior. We rely on the variation process to open new
dimensions. This way, we can hope always to have relevant challenges that are
of appropriate difficulty. Note that, if an evolving population contains a learner
(call it L∗) that is superior to all other learners in the population with respect
to every teacher, then no competence gaps exist “above” L∗ to fill with teachers
that are certain to challenge it. We must wait until some variation occurs to
generate a new learner that outperforms L∗ in some dimension(s) and creates
new gaps in competence. This approach to creating and maintaining gradient for
coevolutionary learning is substantially different from those of Rosin [18], Juillé
[7], Olsson [15], and Paredis [16].

2.2 Learning: Following Gradient

This section describes how we measure success at following a high-dimensional
gradient using the Pareto optimality concept. We name the set of learners R
and the set of teachers S. The payoff matrix G describes the performance of all
learners against all teachers, where Gi,j is the payoff earned by learner i when
interacting with teacher j.

– Learner x Pareto dominates learner y with respect to the set of teachers S,

denoted as x
S
� y, iff: ∀w ∈ S : Gx,w ≥ Gy,w ∧ ∃v ∈ S : Gx,v > Gy,v.

– Learners x and y are mutually non-dominating, denoted as x
S� y, iff:

∃w, v ∈ S : Gx,w > Gy,w ∧ Gx,v < Gy,v.
– The Pareto front of a set of learners R, denoted as F 0(R), is the subset of

all non-dominated learners in R: F 0(R) = {x ∈ R : � ∃w ∈ R, w
S
� x}.

– The dominated subset of R, denoted as D0(R), is the subset of learners that

are dominated by some learner in R: D0(R) = {x ∈ R : ∃w ∈ R, w
S
� x}.

– Note that a learner belongs exclusively either to the front or the dominated
set: F 0(R) ∩ D0(R) = ∅ and F 0(R) ∪ D0(R) = R.

Once we identify the Pareto front F 0 and the set of dominated learners D0,
we may compute the next Pareto layer, F 1 = F 0(D0(R))—the set of learners
that are non-dominated once we exclude the Pareto front. We may continue this
process until every learner is understood to belong to a particular Pareto layer.
Pareto layers indicate both generality and uniqueness in learner competence:
Every learner in F n is less broad in competence than some learner in F n−1, and
every learner in F n can do something better than some other learner in F n.

Intra-Layer Ranking High-dimensional spaces of competing objectives are
known to cause problems for Pareto ranking in ordinary (non-coevolutionary)
EAs [5]. As we note above, a large number of teachers gives a high-dimensional
gradient. This creates potentially many ways in which a learner may excel and
earn a place in a particular Pareto layer. Indeed, we find in our experiments that
the number of learners in F 0 tends to increase over evolutionary time and may
ultimately include as much as 75% of the entire population.

We therefore require some form of intra-layer ranking to differentiate learn-
ers within a particular (possibly crowded) layer. We consider two approaches,
both stemming from diversity-maintenance techniques, and find them to behave
similarly (the experiments reported in this paper use the second approach). Our
first approach is similar to Juillé and Pollack’s [8] competitive fitness paradigm.
In comparing two learners from the same layer, we give each learner a point for
each dimension (teacher) in which it out-scores the other learner. (Alternatively,
if learners x and y out-score each other in nx and ny dimensions, respectively,
then the better of the two agents gets |nx − ny| points and the other gets 0
points.) We accumulate points over all pair-wise comparisons of learners that
belong to the same layer, and then rank learners according to the sums. Our
second approach applies Rosin’s [18] competitive fitness sharing method within
each layer. The learners within a layer are then ranked with respect to each other
according to the results of the fitness sharing. Regardless of which intra-layer
ranking approach is used, inter -layer ranking is achieved by giving the highest-
ranked learner(s) of Pareto layer F n a global rank just below the lowest-ranked
learner(s) of Pareto layer F n−1.

2.3 Teaching: Creating Gradient

This section describes how we measure success at creating gradient for learning.
We begin with the m by n payoff matrix G, where m is the number of learners
and n is the number of teachers. Matrix entry Gi,j is the payoff received by
learner i when it interacts with teacher j. If learner x performs better than

learner y with respect to teacher j (i.e., Gx,j > Gy,j), denoted x
j
> y, then we say

that teacher j distinguishes the learner pair (x, y) in favor of x. By causing a pair
of learners to receive different payoffs, a teacher exposes a gap in the proficiencies
of the two learners. We are interested to identify all such proficiency gaps in the
population of learners, as made apparent by the population of teachers.

To identify all learner pairs that are distinguished by each teacher, we con-
struct a new n by m2−m matrix M. Each column of this matrix corresponds to
a particular pair-wise comparison of learners across all n teachers. We exclude
self-comparisons, since there cannot exist any proficiency gaps between a learner
and itself, and we treat the learner pairs (A, B) and (B, A) as distinct—(A, B)
is reserved for teachers that distinguish A and B in favor of A, while (B, A) is
for teachers that distinguish in favor of B. The matrix entry Mj,k equals one
if teacher j distinguishes the learners in pair k = (x, y) in favor of x. Clearly,
if entry Mj,k is non-zero, then entry Mj,k′ must be zero, where k = (x, y) and
k′ = (y, x).

G =

α β γ
A 1 1 3
B 2 3 2
C 1 2 1

M =

(A, B) (A, C) (B, A) (B, C) (C, A) (C, B)
α 0 0 1 1 0 0
β 0 0 1 1 1 0
γ 1 1 0 1 0 0

(1)

Once we obtain matrix M, we have identified all the ways in which each
teacher demonstrates utility as a touchstone of learner competence. But, how
shall we use this information to create a selective pressure for teachers? To begin
with, a teacher that fails to reveal any variation in learner ability is dubious.

In matrix M (Equation 1), we see that teacher β not only distinguishes all
the learner pairs that teacher α does, namely pairs (B, A) and (B, C), but also
distinguishes another pair, (C, A). If we were to apply Pareto ranking to matrix
M, then we would conclude that teacher β is superior to α because its ability
to reveal variations in learner competence is in some sense more general. Let us
take this example to an extreme and imagine teacher α to distinguish only a
single pair (a, b) while β distinguishes (a, b) and very many more. What these
two dramatically different teacher profiles tell us is that the kind of challenge
offered by teacher α must be very unlike that offered by β. Therefore, even
though β supposedly dominates α, teacher α reveals a dimension of variation in
the learner pair (a, b) that β does not. For this reason, Pareto ranking of matrix
M is inappropriate.

We may instead give all teachers that distinguish at least one learner pair a
score of one, and then divide each teacher’s score by the number teachers with
an identical profile (to better maintain diversity). But, we feel this method to
be too coarse-grained. Our compromise approach is to perform fitness sharing
much like Rosin [18].

Equation 2 shows that the score received by teacher j is the sum, across
all learner pairs distinguished by it, of the value of a learner pair divided by
the pair’s discount factor. The discount factor of a pair is the total number of
teachers that distinguish it. For the value of a pair, we experiment with two
possibilities. Our first approach (Equation 3, left) simply gives every pair an
equal value (vk = 1). Our second approach (Equation 3, right) recognizes certain
pairs as more significant than others. For example, we may argue that a teacher
should get more reward for distinguishing between two good learners than for
distinguishing between two poor ones. Further, a teacher should be rewarded
more for showing a generally good learner to do something worse than a generally
poor learner than the other way around. Therefore, our second approach assigns
the value of a learner pair k = (x, y) to be the fitness of the loser y.

sj =
∑

k

Mj,k
vk

dk
dk =

∑

i

Mi,k (2)

vk = 1 OR vk = fitness(y), where k = (x, y) (3)

3 Majority Function

3.1 Description

Density classification tasks are a popular area of study in cellular automata
research [14, 21, 9, 10, 1, 11, 12]. The objective is to construct a rule that will
cause a one-dimensional, binary CA to converge, within some pre-determined
number of time-steps, to a state of all ones if the percentage (or density) of
ones in the initial condition (IC) is greater than or equal to some pre-established
value, ρ ∈ [0, 1]. Otherwise, the rule should cause the CA to converge to a state
of all zeros. The majority function uses a value of ρ = 0.5.

Though Land and Belew [11] prove that no rule correctly classifies all initial
conditions, the highest possible success rate remains unknown. Currently, the
best rules (of radius three, operating on a CA lattice of 149 bits) achieve success
rates of 85.1%, 86.0%, and 86.3% over a uniform sampling of initial conditions,
and were discovered by Juillé and Pollack [10, 9] through coevolution. These
rules represent a significant improvement over all earlier rules, for example ABK
(82.4%), DAS (82.3%), and GKL (81.5%), as discussed in [10, 14].

3.2 Coevolution of Rules and Densities

Following Juillé and Pollack [10, 9], we use two-population coevolution to find
CA rules of radius three that operate on a one-dimensional lattice of 149 bits. A
radius of n means that lattice positions i− n through i + n (with wrap-around)
are used by the CA rule to determine the next state of lattice position i. A radius
of three gives a “window” of seven bits, meaning the rule must contain 27 = 128
bits, one for each possible window state. This gives us a search space of 2128

possible rules. A lattice of 149 bits has 2149 possible states, and therefore initial
conditions. While one population evolves rules (bit-strings of length 128), the
other population evolves initial condition densities (floating-point numbers)—
not actual initial conditions.

Our experiments depart from those of Juillé and Pollack by using our Pareto
coevolution methodology, outlined above. As with many two-population coevo-
lutionary domains, ours has an intrinsic asymmetry in the difficulties faced by
the two populations: the discovery of good rules is much harder than the discov-
ery of challenging IC densities. Though the space of possible initial conditions
is much larger than the space of possible rules, there exist only 150 distinct IC
densities (from all-zeros to all-ones). Further, densities generally become more
difficult as they approach 0.5 [12, 11], so the space in some sense approximates
a uni-modal landscape. For these reasons, rules are assigned only the role of
learners and IC densities are assigned only the role of teachers. We can imagine
other coevolutionary domains where coevolving entities would be called upon to
fulfill both roles, such as Tic-Tac-Toe.

3.3 Derivation of Payoff Matrix: Test Case Sampling

All ranking methods potentially impose severe non-linearities by expanding small
differences in performance and compressing large ones. Pareto ranking is no
exception and may even be considered more extreme in some ways. Because
of this non-linear behavior, the payoff matrix G, which forms the basis of our
approach, should be as accurate as possible. Thus, our approach is at least as
sensitive to non-deterministic domains as conventional coevolutionary methods.

Our CA domain, however, is deterministic. Because we evolve rules against
densities rather than actual initial conditions, rule performance against a par-
ticular density is expressed as the percentage of correctly classified ICs of that
density class. But, we generally cannot afford to sample a particular density
class exhaustively. This impedes our ability to compare rules of similar ability.
Further, as rules improve in performance, we generally rely on densities closer
to 0.5 to distinguish them. Yet, the distribution of initial conditions over den-
sities is binomial, which makes our sampling of ICs significantly more sparse as
densities approach 0.5 (and our estimation of rule performance less accurate).

We desire a method to extract meaningful information about rule perfor-
mance with relatively few samples. Fortunately, for our Pareto coevolution
methodology to work, we do not need to know precisely how well a particular
rule (learner) performs against a particular IC density (teacher); we only need
relative ranking information. Our solution is to once again turn to the Pareto
optimality criterion. Note that our use of Pareto ranking to derive the payoff
matrix (described here) is not to be confused with our use of Pareto ranking to
rate learners once payoffs are known (described in Section 2.2).

We compute each column j of the payoff matrix G in the following manner.
We generate some number q of initial conditions (q = 40 in our experiments)
that are representative of density (teacher) j; all m rules (learners) are tested
on this set of ICs. The test results are placed in an m by q matrix H, where
Hu,v = 1 if rule u correctly classifies IC v and Hu,v = 0 otherwise. We then
perform Pareto ranking of rule performance based on H. Rules on the Pareto
front F 0 are given the highest payoff, those in layer F 1 the next highest, and so
on. These payoffs form column j of the payoff matrix G.

All rules cover some subset of ICs that belong to a particular density class.
These subsets may overlap in any number of ways. We require that a rule dom-
inate another in terms of measured coverage in order to receive a higher payoff;
this is more stringent than mere comparison of measured success rates. For ex-
ample, two rules that each cover 50% of some density class may overlap entirely
on the one extreme, or not at all on the other extreme. Regardless of the amount
of actual overlap, the chance that our measured coverage will indicate one rule to
dominate the other is extremely small, even though the measured success rates
(number of ICs solved by the two rules) will very likely be unequal. But, as the
actual performance rates of two rules grow apart, the more likely it becomes for
the better of the two to dominate the other in measured coverage (especially if
actual coverage of the stronger rule overlaps heavily with that of the other).

Our method of test-case sampling removes the need for an explicit similarity
metric—similarity is guaranteed by the process of generating multiple ICs from
a density value. Juillé and Pollack [10, 9] require a similarity metric to cluster
IC densities so that rule performance can be gauged with respect to density.

4 Experimental Setup

A rule is given 320 time-steps to converge the CA to the correct state. The sizes
of our populations of rules and IC densities are NR = 150 and NIC = 100,
respectively. All rules are tested against all densities in every generation. Each
density is sampled 40 times, giving a total of 6×105 evaluations per generation.

The initial population of rules is composed of random bit-strings, distributed
uniformly over the range of string densities (0 to 128 ones). The initial population
of IC densities is distributed uniformly over the interval [0, 1]. Rules are varied
by one-point crossover and a 2% per-bit mutation rate. IC densities are varied
by the addition of Gaussian noise of zero mean and standard deviation of 0.05.

Rule ranks are squared before they are normalized for the roulette wheel.
The next generation of rules is created by using Baker’s [2] SUS method to
select 75 rules that remain unaltered and another 75 rules to which the variation
operators are applied. The next generation of IC densities is created by using
SUS to select 50 densities that remain unaltered and another 25 that are varied.
The remaining 25 densities are picked at random from a uniform distribution.

An IC density is converted to an actual initial condition by first adding
Gaussian noise of zero mean and standard deviation of 0.05. We multiply the
result by 149 and take the floor to arrive at an integer between 0 and 149. The
initial condition will be a random bit-string of exactly that number of ones. All
rules see the same set of initial conditions.

5 Results and Discussion

We have conducted six runs of our experiment, three for each of our two methods
of valuating learner pairs (see Section 2.3 and Equation 3). Our best result to-
date is a rule that correctly classifies 84.0% of initial conditions, shown in Table
1. We determine this success rate by testing the rule against 4 × 107 randomly
generated ICs (that is, a binomial distribution of IC densities). The rule took
approximately 1300 generations to evolve. Two of the other runs each exceed
81% success; our worst result is 78.8% success. While our best result comes from
our first method of valuating learner pairs (see Equation 3), the data do not
distinguish the performance of the two methods.

In experiments where NR = NIC = 400 [10], Juillé and Pollack discover a rule
that achieves 85.1% success (some runs give ≤ 76%). Their best results (86.0%
and 86.3% success) are discovered in experiments where NR = NIC = 1000 [10,
9] (experiments last 5000 generations; all exceed 82.0% success). They test all
rules against all densities, but each density is sampled only once. In contrast,
our experiments use much smaller population sizes (NR = 150, NIC = 100),

Table 1. Currently best evolved rule using Pareto coevolution.

Rule 1 00010000 01010011 00000000 11010010 00000000 01010001 00001111 01011011
84.0% 00011111 01010011 11111111 11011111 00001111 01010101 11001111 01011111

but we sample each density 40 times. Thus, the total amount of computation in
our experiments falls in between those of Juillé and Pollack. But, in exchange
for a more expensive IC density sampling procedure (see Section 3.3), we avoid
the explicit similarity metric required by Juillé and Pollack to classify ICs, and
thereby arrive at an approach that should more easily generalize to other prob-
lem domains (e.g., sorting networks). Indeed, we intend ultimately to apply our
Pareto coevolution methodology to variable-sum games, in addition to zero-sum
games such as those studied by Rosin [18] and Juillé [7].

While we do not improve upon the results of Juillé and Pollack [10, 9], we im-
prove significantly upon all results published elsewhere. The next most effective
rule is by Andre, et al [1], which performs at 82.4%. This rule was discovered
with genetic programming in experiments using a rule population size of 51,200,
each tested on 1000 different ICs (ICs were not coevolved) per generation. We
are confident that we can improve our results with larger populations.

6 Conclusion and Future Work

We propose a novel coevolutionary algorithm based upon the concept of Pareto
optimality. Our algorithm distinguishes the role of the gradient follower from
that of the gradient creator, even though both may coexist within the same
agent, and utilizes Pareto-inspired metrics of success for both roles. We use
our algorithm to coevolve cellular automata rules for the majority function and
discover a rule that correctly classifies 84.0% of initial conditions. Though our
result is encouraging, we clearly have many more experiments to perform. We
must try larger populations, and perhaps different inter-generational replacement
schemes. We require control experiments to identify the contributions of each
component of our overall methodology. In these controls, we will substitute one
or two of our methods (for rewarding learners and teachers, and for sampling
densities) with more conventional mechanisms, for example using a problem-
specific similarity metric instead of our more expensive sampling method. We
are conducting a deeper analysis of our algorithm’s dynamics. Particularly, a
more game-theoretic review of our algorithm is necessary to fully expose its
behavior in variable-sum games and zero-sum games with intransitive superiority
relationships. Finally, we are investigating various ways to integrate our metrics
of learner and teacher success for single-population coevolution.

Acknowledgments

The authors thank Anthony Bucci, Hugues Juillé, Norayr Vardanyan, Richard
Watson, and members of the DEMO Lab.

References

1. D. Andre et al. Evolution of intricate long-distance communication signals in
cellular automata using genetic programming. In C. G. Langton and K. Shimohara,
editors, Artificial Life V, pages 16–18. MIT Press, 1996.

2. J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In Proc.
Second Int. Conf. on Genetic Algorithms, pages 14–21. Lawrence Earlbaum, 1987.

3. D. Cliff and G. F. Miller. Tracking the red queen: Measurements of adaptive
progress in co-evolutionary simulations. In F. Moran et al., editors, Third Euro.
Conf. on Artificial Life, pages 200–218. Springer, 1995.

4. S. G. Ficici and J. B. Pollack. A game-theoretic approach to the simple coevolu-
tionary algorithm. In Schoenauer et al. [19], pages 467–476.

5. C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in
multiobjective optimization. Evolutionary Computation, 3(1):1–16, 1995.

6. D. Hillis. Co-evolving parasites improves simulated evolution as an optimization
procedure. In C. Langton et al., editors, Artificial Life II, pages 313–324. Addison-
Wesley, 1991.

7. H. Juillé. Methods for Statistical Inference: Extending the Evolutionary Computa-
tion Paradigm. PhD thesis, Brandeis University, 1999.

8. H. Juillé and J. B. Pollack. Co-evolving intertwined spirals. In L. J. Fogel et al.,
editors, Proc. Fifth Annual Conf. on Evolutionary Programming, pages 461–468.
MIT Press, 1996.

9. H. Juillé and J. B. Pollack. Coevolutionary learning: a case study. In J. Shavlik,
editor, Proc. Fifteenth Int. Conf. on Machine Learning, pages 251–259. Morgan
Kaufmann, 1998.

10. H. Juillé and J. B. Pollack. Coevolving the “ideal” trainer: Application to the
discovery of cellular automata rules. In J. R. Koza et al., editors, Proc. Third
Annual Conf. on Genetic Programming, pages 519–527. Morgan Kaufmann, 1998.

11. M. Land and R. K. Belew. No perfect two-state cellular automata for density
classification exists. Physical Review Letters, 74(25):1548–1550, 1995.

12. M. Mitchell et al. Evolving cellular automata to perform computations: Mecha-
nisms and impediments. Physica D, 75:361–391, 1994.

13. J. Noble and R. A. Watson. Pareto coevolution: Using performance against coe-
volved opponents in a game as dimensions for pareto selection. In L. Spector et al.,
editors, Proc. 2001 Genetic and Evo. Comp. Conf. Morgan Kaufmann, 2001.

14. G. M. B. Oliveira et al. Evolving solutions of the density classification task in 1d
cellular automata, guided by parameters that estimate their dynamic behaviour.
In M. A. Bedau et al., editors, Artificial Life VII, pages 428–436. MIT Press, 2000.

15. B. Olsson. NK -landscapes as test functions for evaluation of host-parasite algo-
rithms. In Schoenauer et al. [19], pages 487–496.

16. J. Paredis. Towards balanced coevolution. In Schoenauer et al. [19], pages 497–506.
17. J. B. Pollack and A. D. Blair. Co-evolution in the successful learning of backgam-

mon strategy. Machine Learning, 32(3):225–240, 1998.
18. C. D. Rosin. Coevolutionary Search Among Adversaries. PhD thesis, University

of California, San Diego, 1997.
19. M. Schoenauer et al., editors. Parallel Prob. Solv. from Nature 6. Springer, 2000.
20. R. A. Watson and J. B. Pollack. Symbiotic combination as an alternative to sexual

recombination in genetic algorithms. In Schoenauer et al. [19], pages 425–434.
21. J. Werfel et al. Resource sharing and coevolution in evolving cellular automata.

IEEE Transactions on Evolutionary Computation, 4(4):388–393, 2000.

