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Abstract.

We introduce Embodied Evolution (EE), a new methodology for conducting

evolutionary robotics (ER). Embodied evolution uses a population of physical robots that

evolve by reproducing with one another in the task environment.

EE addresses several

issues identified by researchers in the evolutionary robotics community as problematic for the

development of ER. We review results from our first experiments and discuss the advantages

and limitations of the EE methodology.

1 Introduction

As an alternative to the hand design of robotic con-
trollers, evolutionary robotics (ER) (Harvey et al.,
1993; Cliff et al., 1993; Husbands and Harvey, 1992)
has generated a great deal of exuberance. While
expected by many to emerge as an important tech-
nology (Meyer et al., 1998), ER is currently a new
research area in which a number of potentially seri-
ous problems are known to exist. Comprehensively
summarized by (Mataric and Cliff, 1996), these is-
sues ultimately question whether ER techniques can
produce a net savings of human effort when applied
to complex robotic domains.

Our work is inspired by the vision of a large
population of robots that reproduce with one an-
other and evolve in their task environment. This
vision, to our knowledge first described in (Hus-
bands et al., 1992), aspires to an ideal where the
robot population evolves in a completely hands-free
and autonomous manner; in so doing, it offers in-
triguing possibilities for the future of evolutionary
robotics. Nevertheless, many substantial technolog-
ical demands are made by this conception of robot
evolution, and considerable algorithmic detail must
be added before it is implementable.

We have developed this vision into a working
implementation and have termed our methodology
embodied evolution (EE). We define EE as evolu-
tion taking place within a population of real robots

where evaluation, selection, and reproduction are
carried out by and between the robots in a dis-
tributed, asynchronous, and autonomous manner.
Thus, we distinguish embodied evolution from ER
methods that use embodied trials—the serial eval-
uation of candidate controllers on one or a small
number of real robots (Harvey et al., 1993; Flo-
reano and Mondada, 1994; Floreano and Mondada,
1996; Nolfi, 1997)—as well as algorithms that main-
tain and manipulate the specifications of individ-
ual agents in a centralized manner. As an intrinsi-
cally population-based method where robots adapt
in the task environment, EE provides an intersec-
tion between evolutionary robotics and collective
robotics: EE potentially offers an ideal substrate
with which to study emergent group behavior and
explore mechanisms that adaptively discover prob-
lem decomposition. As well as providing a sub-
strate for studying collective agent behavior, the
distributed nature of the EE architecture gives its
adaptive mechanism both scalability (with respect
to the number of robots used) and robustness (with
respect to hardware failures).

We review some of the technical and algorithmic
details that have enabled the first embodied evo-
lution experiments and discuss the advantages and
limitations of our methodology, particularly with
respect to the many problematic issues that face the
evolutionary robotics community, as identified by
(Mataric and Cliff, 1996). In the following sections



we outline our implementation of the embodied evo-
lution concept, describe experiments and give re-
sults, then enter a discussion of related work and
detail the issues raised by Mataric and Cliff that
EE does and does not address, and finally give con-
cluding remarks and directions for future work.

2 Implementing EE

One requirement for implementing embodied evo-
lution i1s the development of an appropriate evo-
lutionary algorithm. The principal components of
any evolutionary algorithm are evaluation, selec-
tion, and reproduction, and all of these are car-
ried out autonomously by and between the robots
in a distributed fashion according to our definition
of embodied evolution (the implications of this are
discussed below).

Because the process of evaluation is carried out
autonomously by each robot, some metric must be
programmed into the robots with which they can
measure their performance. This can be quite im-
plicit, for example, where failing to maintain ade-
quate power results in “death” (Mondada and Flo-
reano, 1996). Or, it can be explicitly hard-coded,
for example, where fitness is a function of objects
collected and time. Whatever metric is used, per-
formance against it must be monitored by the robot
itself, as no external observer exists to measure a
robot’s ability explicitly.

Reproduction must also be both distributed and
asynchronous in EE. Assuming that we can not re-
ally create new robots spontaneously, the offspring
must be implemented using (other) robots of the
same population. And, if we do not have struc-
turally reconfigurable bodies, reproduction must
simply mean the exchange of genetic information
that codes control programs.

In general, selection in an evolutionary algorithm
may be realized by having more-fit individuals sup-
ply genes (i.e., be parents) or by having less-fit in-
dividuals lose genes (i.e., be replaced by the off-
spring) or by a combination of both. The Microbial
GA (Harvey, 1996) uses this observation to simplify
the steady-state genetic algorithm; rather than pick
two (above-average fitness) parents and produce an
offspring from the combination of their genes to re-
place a (below-average) third, the Microbial GA
selects two individuals at random and overwrites
some of the genes of the less fit (of the two) with
those from the more fit. In effect, the less fit of
the two becomes the offspring. To achieve decen-
tralized and asynchronous reproduction in EE, we
have developed a probabilistic version of the Micro-

bial GA that we call the Probabilistic Gene Transfer
Algorithm (PGTA). This algorithm requires mini-
mal inter-agent communication, and eliminates the
need to coordinate the communication of each re-
production event.

In the PGTA, reproduction is concurrent with
task behavior—there is no “reproduction mode”
as such. Each robot maintains a virtual energy
level, which reflects the robot’s performance at the
task, and each robot probabilistically broadcasts ge-
netic information on its local-range communication
channel at a rate proportional to this energy level.
Each broadcast contains a mutated version of one
randomly-selected gene from the robot’s genome
(i.e., one parameter from the robot’s control spec-
ification). If another robot receives the broadcast,
that robot may allow the received gene value to
overwrite its own corresponding gene. The receiv-
ing robot will accept the broadcast gene with a
probability inversely related to its own energy level.
Robots with higher energy thus attempt to repro-
duce, and resist the reproductive attempts of oth-
ers, more frequently than do robots with lower en-
ergy. Nevertheless, because sending and receiving is
probabilistic, and genes are picked at random, the
PGTA does not guarantee that a fitter robot will
transfer all its genes to a less fit robot. On average
robots are left with a mixture of genes in propor-
tion to their relative energy levels. This implements
a fitness-proportionate recombinative evolutionary
algorithm.

Using the PGTA, each reproduction event re-
quires only unidirectional communication—there 1s
no need for robots to coordinate reproductive acts,
for a robot to know the fitness or identity of an-
other robot, or even to know that any robot received
its broadcast. The PGTA thus allows the com-
plete decentralization of selection and reproduction.
Though the PGTA provides an interesting mecha-
nism for EAs in general, its robustness to genetic in-
formation “dropped” in communication makes the
PGTA particularly advantageous for implementa-
tion in a population of real robots.

3 Experiments and Results

3.1 Setup

Our first experiments in EE used a population of
eight of our custom-built robots, which employ
the “Cricket” micro-controller board (supplied by
the MIT Media Laboratory (Resnick et al., 1997)).
Each robot has a 12cm diameter and is equipped
with two light sensors, two motors, and an infra-red



emitter/detector pair that provides local communi-
cation. The transfer of genetic material during re-
production is performed via local broadcasts (‘nar-
rowcasts’) on the infra-red communications chan-
nel. Thus reproduction events occur according to
the movements and co-locations of the robots. This
limited communication range (approximately one
body width in radius) combined with the freely-
mixed population of our shared environment essen-
tially implements random selection of mates, as ap-
propriate for the PGTA. The control architecture is
a small feed-forward artificial neural network, the
weights of which are evolved to perform phototaxis
similar to that described in (Braitenberg, 1984).
The network consists of two output nodes, one for
each of the two motors, one binary-valued input
node, which indicates which of the robot’s two light
sensors is receiving more light, and one bias node
that has a constant activation.

The task environment consists of a 130cm by
200cm pen with a lamp located in the middle, visi-
ble from all positions on the floor plane. The robot
task is to reach the light from any starting point in
the pen. An infra-red beacon mounted above the
light emits a signal that robots detect when they
reach the light source. The beacon signal triggers
a built-in reset behavior that moves the robot to a
random position and orientation along the periph-
ery of the pen, from where the robot recommences
its light-seeking behavior. If a robot’s sensor values
do not change for some period of time, the robot
assumes that it is stuck against a wall and invokes
a second built-in behavior that attempts to free the
robot by rotating it a random amount. Both of
these built-in behaviors operate independently of
the evolving neural-network controller.

The virtual energy level maintained by a robot
is updated as follows: whenever a robot reaches
the light its energy is increased by a fixed amount,
up to a maximum energy value; whenever a robot
sends a gene for reproduction (regardless of whether
another robot receives or accepts the gene) its en-
ergy is decreased by a small fixed amount, down to
a minimal energy value. Since the robot’s rate of
sending genes is proportional to its energy level and
decrements occur with each send, the rate of broad-
casting decays exponentially over the time from its
most recent visit to the light. The energy level thus
approximates a leaky integral of the robot’s perfor-
mance at its task (i.e., the frequency with which
it reaches the light). Experimental details can be
found in (Watson et al., 1999).

3.2 Results

Figure 1 shows the frequency with which the light
is successfully reached by the robot population over
time in each of three experiments. The main exper-
iment evolves the neural-network weights to per-
form the light-seeking task. The initial condition
for the networks is that all weights have a value of
zero (this configuration produces no output to the
motors and provides a neutral starting point). The
other two experiments are controls where the robots
do not evolve; in one case the robots’ weights are
random values, in the other the robots use weights
of a hand-designed solution.
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Figure 1: Performance Over Time. Upon detecting
the beacon’s signal, a robot sends a reply signal to the
beacon. These replies are then delivered to a desktop
computer where they are time-stamped. Three solid
curves show the performance of the robot population
using hand-designed (non-evolved), evolved, and ran-
dom (non-evolved) networks. The data from the hand-
designed and evolved experiments are averaged over six
runs, while the data from the random-solution experi-
ment are averaged over two runs. Each run lasts 140
minutes and uses eight robots. The vertical axis repre-
sents the average rate (in hits per minute) at which the
group of robots reaches the light. A time window of 20
minutes is used to compute the instantaneous hit rate
for each data point on the graph (hence the first data
points appear at Time = 20 minutes). Vertical bars on
the evolved run, shown every 10 minutes, and the dotted
lines on the control experiments, show +/- one standard
deviation. Though the evolved solutions begin with net-
work weights of zero, we see that the robots achieve an
average performance of four hits per minute within the
first twenty minutes of the experiment and eventually
exceed the hand-designed hit rate (the Wilcoxon rank-
sum test gives p = 0.935).

As Figure 1 shows, the two controls show a broad
range of possible performance levels and provide



useful references against which to judge the suc-
cess of the trials where evolution takes place. We
see that embodied evolution allows the population
of robots to achieve performance favorably com-
parable to that of our hand-designed solution—
the Wilcoxon rank-sum test ! indicates that EE
outperforms the designed solution with probability
p = 0.935. These results provide the first evidence
that a fully decentralized, asynchronous evolution-
ary algorithm, can operate effectively in a popu-
lation of physical robots and provide high-quality
control programs.

There are several points of interest in this re-
sult. First, though the robots learn to approach
the light in a multi-robot environment, they are
able to perform effectively in isolation, as well (not
shown here). Second, the evolved solutions exhibit
behaviors that are qualitatively different from our
hand-designed solution; evolution appears to fa-
vor a “looping” solution, whereas, with our hand-
designed solution, the robot “swaggers” to the light.
The reasons for this are not known as yet. Finally,
the energy level maintained by a robot is an odd
representation of its performance compared to the
usual meaning of “fitness.” In our implementation,
the energy level is not reset in a robot when it re-
ceives a new gene during a reproductive event—and
80, the energy level is related to the performance of
the various controllers that have been resident on
that robot. In contrast, one would not normally
expect the fitness of previously-resident controllers
to affect the current fitness of a robot. However,
assuming that the offspring is similar to the parent,
our method of using inherited energy potentially
reduces the number of trials that must take place
before the fitness measure of a new controller is re-

hable.

4 Discussion

Mataric and Cliff’s thorough assessment of the chal-
lenges that face evolutionary robotics (Mataric and
Cliff, 1996) attracted considerable attention in the
ER community. It provides a useful framework in
which we can consider the contributions made by
the embodied evolution methodology. We now re-
vue how EE addresses the major issues that they
raise.

1The Wilcoxon test is preferred over the Student t-test in
this case because the variances of the designed and evolved
runs are very different from each other.

4.1 Simulation

o “The difficulty of accurately simulating phys-
ical systems is well known in robotics.”

(Mataric and Cliff, 1996, p. 76)

e “As the complexity of robotic systems grows
and the gap between the simulation and the
real system widens, the question of the value
of investing in a specialized simulation will be-
come increasingly important.” (Mataric and

CIiff, 1996, p. 76)

Mataric and Cliff, in agreement with (Brooks,
1992), raise the concern that a lack of simulation
fidelity can lead to problems of transference, where
robotic controllers that evolve in simulation are un-
able to perform effectively when transferred to real
robots because they exploit features of the simula-
tor that are not found in the physical world. They
argue that this problem is magnified as the system
to be modeled becomes more complex. Indeed, even
virtual worlds that are not intended to faithfully
model the real-world can become complex and dif-
ficult to create; the ground-breaking work of (Sims,
1994), for example, has yet to be fully duplicated.

More recently, a method has been devised to
provably eliminate transference risks from the de-
sign of a simulator, but only provided that the
environmental factors responsible for correct be-
havior are known a priori (Jakobi, 1997a; Jakobi,
1997b). This allows the environmental factors that
are not salient to the robot to be approximated,
which minimizes the computational requirements of
the simulation. However, as environments continue
to become more complex (for example, if they in-
volve a multiplicity of robots, or robots with high-
resolution sensory apparatus such as vision), the
critical environmental factors will become more dif-
ficult to ascertain, more difficult to model, and more
costly to simulate, arguably to the extent that sim-
ulation is prohibited.

Because embodied
simulation—evaluations are conducted with real

evolution does not use
robots in a real environment—these issues are
avoided. Evaluations have perfect fidelity and the
problem of transference is side-stepped completely.

4.2 Time

e “Evolution on physical systems takes pro-
hibitively long.” (Mataric and Cliff, 1996, p.
76)

e “[Consider a problem of]...five free parameters,
each of which is tested with four different val-



ues, [and where]...each trial takes 15 s [seconds]
With a population of size 100...the 100th
generation will finish in roughly five years.”

(Mataric and Cliff, 1996, p. 80)

The issue of time raised by Mataric and CIiff is
in contrast to the supposed speed of simulation.
Though simplifying assumptions and stochastic ap-
proximations minimize simulator complexity, they
do not eliminate 1t; a sufficiently complex environ-
ment can still cause simulation to run slower than
real time. Embodied trials, although they may be
slower than approximate models of simple domains,
are never slower than real time and they have per-
fect fidelity.

Nevertheless, serial evaluation of candidate robot
controllers on a single robot (Floreano and Mon-
dada, 1994; Floreano and Mondada, 1996) can take
a very long time, indeed. Parallelization can allevi-
ate this concern for both simulated and embodied
approaches. Even in Mataric and Cliff’s example
scenario above, which they characterize as “exag-
gerated,” a population of 100 robots reduces five
years to 18 days (5 years = 1825 days; dividing by
population size of 100 gives 18). However, where
robots perform interactive tasks in a shared envi-
ronment, parallelizing simulation is not trivial: for
example, collision detection and mutual-sightedness
are problematic. Also, a centralized method of eval-
uation using real robots will potentially suffer from
communication bottlenecks (Martinoli et al., 1997).
In contrast, the distributed architecture of EE is
intrinsically scalable with respect to the number of
robots.

Our distributed steady-state PGTA evolutionary
algorithm also prevents pathologically long evalu-
ations from delaying other evaluations from start-
ing. These time savings obviously come at the cost
of significant hardware duplication. Yet, as large-
scale multi-agent domains become increasingly im-
portant arenas of research, large numbers of robots
will become commonplace; with EE, we merely ex-
ploit the ubiquity of hardware as it becomes avail-

able.

4.3 Power

e “The unavoidable need to recharge robot bat-
teries further slows down the experimental pro-

cedure.” (Mataric and Cliff, 1996, p. 76)

The issue of power pervades robotics. Battery-
powered robots can run for a period only on the or-
der of hours, usually no more than two or three, be-
fore the batteries either run out or require recharg-
ing. The use of recharging stations, however, is

not transparent to the domain task because it in-
terrupts task behaviors for non-trivial amounts of
time. Tethers provide continuous power, but easily
tangle if used on more than a few robots.

We have developed and refined a powered-floor
technology that transparently provides continuous,
untethered power to our robots, without the use of
recharging stations. Our powered floor is surfaced
with strips of stainless-steel tape, which are alter-
nately connected to the positive and negative poles
of a DC power source. Each robot has four con-
tact points on the underside of its body, with which
it draws power from the floor. The geometry of
the contacts guarantees that at least one point can
make contact with each pole of the DC power sup-
ply, regardless of the rotation or translation of the
robot on the floor. Nevertheless, a contact switches
polarity according to the position of the robot on
the floor, and so the power is rectified before being
delivered to the robot’s controller and motors. A
rechargeable cell is used to cover intermittentcy in
contact.

While building our powered floor, we learned of
two other research groups that have built floors of
similar construction (Martinoli et al., 1997; Keat-
ing, 1998). These parallel achievements attest to
the viability and utility of this power supply ap-
proach. Other approaches (AAIS, 1998), like ear-
lier prototypes of our own, use a floor-and-ceiling
“bumper-car” style set-up. Together these exam-
ples demonstrate that the issue of power delivery is
not a fundamental restriction to the development of
evolutionary robotics, at least in laboratory condi-
tions, if not some industrial settings as well. While
technologies such as the powered floor are impor-
tant to the implementation of our experiments, we
do not consider them to be an intrinsic part of the
EE methodology.

4.4 Robustness

e “..a robotic system cannot survive the neces-
sary continuous testing...” (Mataric and CIliff,
1996, p. 76)

Robots used in research are rarely endowed with
the robustness that is engineered into industrial
robots, usually for reasons of economy of develop-
ment time or expense. As a result, research robots
demand almost constant care and attention to keep
them in operational order. The robots we built for
our experiments are no exception in this respect.

Nevertheless, the population of robots that EE
uses is a valuable source of redundancy, which al-
lows the performance of the evolutionary system to



degrade gracefully with the number of robot fail-
ures. There 1s even potential for the evolution-
ary system to learn to avoid destructive behav-
ior. While we concede that physical failures are
inevitable for long running times, especially when
many robots are involved in physical interaction,
the parallelism of embodied evolution reduces the
amount of run-time per robot by a factor equal to
the size of the robot population.

4.5 Other Issues

Mataric and Cliff raise several other issues that per-
tain to any method of machine learning, or even to
hand-design methods. While our EE methodology
is silent on these points, they are important to rec-
ognize. One such point in particular concerns the
creation of an effective metric of agent success; all
automated learning methods, including embodied
evolution, require feedback to function. The ques-
tion of how researchers are to construct good met-
rics of behavior for autonomous robots, especially
as environments become more complex and inter-
active, is of vital importance and will continue to
require special attention.

5 Where is EE suitable?

The core strengths of EE stem from its distributed
architecture. Particularly, EE has potential to scale
to very large systems (on the order of hundreds or
thousands of robots). Embodied evolution is also
particularly suited in any of the following circum-
stances, which we assert will become increasingly
prevalent. All but the first item are out of reach
for traditional ER approaches. Taken together, the
points below provide a strong motivation for a dis-
tributed, embodied approach:

e where the task domain cannot be simulated,
for whatever reason, or where a simulator is
not available.

Minimally complex simulations of multi-agent
systems will eventually run slower than real
time as the domain complexity increases, or
cause transference problems—there is an un-
avoidable tradeoff between complexity and ac-
curacy when simulation is used. EE avoids
this.

e where a centralized, global coordinator for ma-
chine learning is not implementable or is un-
available, or where having parallelized embod-
ied trials makes coordination of generational
reproduction difficult.

Scaling problems, e.g., in the form of communi-
cation bottlenecks (Martinoli et al., 1997), will
arise for any centralized learning algorithm.
EE does not depend on any centralized com-
ponents.

where the agents must learn “in the field.”

One can easily imagine applications where
learning can only occur once the agents are de-
ployed in the actual task domain, for example if
the agents are deployed in a remote region (e.g.,
Mars or perhaps a Micro Electro-Mechanical
Systems (MEMS) substrate). In such a case, a
centralized coordinator of agent learning would
be both difficult to design and perhaps precari-
ous to use, as it would give the learning system
asingle point of failure. The distributed nature
of EE provides a robust method for adaptation
in the field.

where we are concerned with interactive tasks
(e.g., emergent group or team behaviors where
we do not have a prior: knowledge of group
size and problem decomposition).

In complex multi-agent domains, we are likely
to not know how best to decompose the prob-
lem task into sub-tasks and will therefore re-
quire the discovery of a decomposition; note
that multi-agent domains that require some
form of centralized task control are not incom-
patible with a distributed learning algorithm.
A minimally biased way to achieve behavioral
or functional differentiation, in an evolutionary
context, is to put reproductive behavior itself
under evolutionary control such that speciation
is made possible. EE uses multiple agents in-
teracting in a shared environment and enables
integration of reproductive behaviors with task
behaviors.

where the reproductive behavior itself is under
adaptation.

If the robots’ choices for reproduction are ex-
pressed and determined by their behaviors,
then a centralized reproductive algorithm that
determines which robots reproduce with which
other robots is excluded: reproductive and
task-oriented behaviors are not categorically
distinct, and a centralized mechanism would
require an interpretive process to disentangle
reproductive from non-reproductive behaviors,
or else be reduced to a proxy for the robot’s
reproductive choices.



6 Caveats and Peculiar Issues

In spite of our enthusiasm for the embodied evo-
lution approach, we must recognize that it is still
a developing methodology, and although EE offers
solutions for some issues, 1t also introduces new dif-
ficulties.

e An environment that contains a multitude of
robots also includes some amount of robot-
to-robot interference (Schneider-Fontdn and
Mataric, 1996); e.g., our phototaxis environ-
ment implicitly requires that each robot also
successfully overcome interference. Hence we
suggest that EE 1s more suitable where inter-
action is native to the task domain.

e Our experiments to date have concerned only
simple tasks for which many other learning ap-
proaches have also been effective. Though we
suggest EE is suited to multi-agent systems, we
are only just now designing experiments that
involve explicitly interactive tasks.

e Our powered-floor is constrained to research or
industrial environments; other applications will
require different power technologies.

e Because we eschew centralization, the job
of monitoring our experiments and collecting
data is made more awkward. With our current
robotic hardware we are unable to monitor re-

productive activity, for example.

e Because reproduction is based upon the prin-
ciple of locality in our particular experimental
setup, our implementation of EE is susceptible
to failure if the agents become physically, and
therefore reproductively, isolated. Moreover,
the need to prevent reproductive i1solation pro-
duces a selective pressure that may interfere de-
structively with the objective of the task. And
if, as we suggest, the reproductive mechanism
is modified to allow speciation, we can imag-
ine that reproductive behaviors could become
quite elaborate, worsening this interference.

e Though embodied evolution appears particu-
larly suited to team tasks, the precise manner
in which EE should be applied to team evo-
lution is unclear. The requirement of locality
seems to suggest that an awkward overlapping
of multiple teams is needed for reproduction to
take place, and the mechanism for organizing
games between teams is problematic.

Thus we see that a great deal of research effort is
still required to meet the long-term goals of EE, and
although EE provides advantages in some domains
it is not suitable for all applications.

7 Conclusions

We have introduced embodied evolution as a new
methodology for evolutionary robotics. In good
part, our motivation for the development of EE was
simply to see if the artificial evolution of a popu-
lation of robots could be implemented in the dis-
tributed and autonomous manner of natural evo-
lution. But, EE also addresses several significant
issues identified by ER researchers as problematic.
Specifically, EE eliminates problems of simulation
transference, alleviates the slow running time of
numerous embodied trials, and provides robustness
and scalability. EE also provides a promising sub-
strate for the exploration of evolved group behaviors
and provides interest for the Artificial Life commu-
nity.

We must be careful to separate technological is-
sues from fundamental ones when considering the
long term prospects for evolutionary robotics. Our
implementation of embodied evolution reveals some
concerns, such as power, to be merely technological.
Other issues, such as combinatorics and the limits
of simulation, are fundamental in nature and can
not be solved technologically. Nevertheless, some
of these fundamental issues are ameliorated by the
parallelism that EE employs.

We are currently running a suite of control exper-
iments to better understand the evolutionary dy-
namics of the PGTA. These experiments will help
us understand more precisely the parameters criti-
cal for the operation of EE. Our future work will ad-
dress advanced robotic platforms, including evolv-
able hardware and evolvable morphology. In par-
ticular, our future task domains will emphasize the
goal of evolving multi-agent systems.

Mataric and Cliff rightly point out that the util-
ity of ER is ultimately determined by its ability to
save human effort. Qur continued investment in de-
veloping ER techniques, and the EE methodology
in particular, is done with the belief that problem
domains of interest will soon be, if they are not al-
ready, too difficult for the hand design of solutions;
indeed, the seminal work in evolutionary robotics
was done with this realization in mind (Husbands
and Harvey, 1992). That evolutionary techniques
have the potential to find unexpected, yet effec-
tive solutions has been made apparent to us several
times during the course of our work on embodied



evolution. The ability to discover novel, surprising
solutions is the real promise of evolutionary tech-
niques.
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