
COMPLETE INDUCTION OF RECURRENT NEURAL NETWORKS

PETER J. ANGELINE
IBM Federal Systems Company, Rt 17C

Owego, New York 13827

GREGORY M. SAUNDERS and JORDAN B. POLLACK
Laboratory for Artificial Intelligence Research, The Ohio State University,

Columbus, Ohio 43210

ABSTRACT

It has occurred to many researchers to apply genetic algorithms to the training of recurrent
neural networks. These studies generally avoid total network induction, i.e., inducing both
the topology and parametric values of a network, favoring instead simple parametric
learning. Also, they often rely on standard forms of crossover to manipulate network
structures, a process which actually inhibits network evolution. In addition, the common
commitment to bit string representations introduces an artificial limitation on the range of
networks that can be created. In this paper, an evolutionary program, called GNARL, is
presented that performs total network induction. GNARL’s ability to induce a range of
appropriate solutions is demonstrated on an interesting control task.

1. Introduction

Applying evolutionary computations to the training of neural networks has occurred to
many researchers. Studies that use genetic algorithms11 to evolve connectionist networks
generally avoid total network induction, i.e., inducing both the topology and parametric
values of a network, favoring instead simple parametric learning.3,12,17 Genetic algorithm
studies that do induce network topology allow only limited structural changes.16,13 In addi-
tion, these studies rely on generic forms of crossover to manipulate network structure, a
process which this paper argues actually inhibits network evolution.

Evolutionary programming,7,5 an alternative evolutionary optimization technique,
embodies principles that better respect the complexities of evolving neural networks. This
paper presents GNARL, an evolutionary program that induces both the topology and para-
metric values for recurrent neural networks. GNARL is demonstrated on an interesting
control task.

2. Evolving Networks with Genetic Algorithms

Genetic algorithms create new individuals by recombining the representational com-
ponents of two population members, usually represented as bit strings which are inter-
preted as the representation to be evaluated. They therefore rely on two distinct
representational spaces, one in which the search is performed, called thesearch represen-
tation, and one in which candidate solutions are evaluated, called theevaluated represen-
tation.1,2 An interpretation function maps between elements of these distinct
representational spaces.1,2 For instance, when the task is to evolve connectionist networks,
the interpretation function maps individuals from the chosen search representation into the

evaluated connectionist network. Clearly, the choice of interpretation function introduces
a strong bias into the search, typically by excluding many potentially interesting and use-
ful networks. The benefits of having such a dual representation hinge on supplying an
interpretation function that makes crossover an appropriate evolutionary operator for the
task. Otherwise, the need to translate between dual representations is an unnecessary com-
plication.

Characterizing tasks for which crossover is beneficial is an open question. Crossover
has been hypothesized to be most effective in tasks where the fitness of a member of the
population is reasonably correlated with the expected ability of its representational com-
ponents.9 Environments where this is not true are calleddeceptive.8 Deceptive problems
are generally more difficult for a genetic algorithm to solve. Often, the interpretation func-
tion is specially crafted to reduce or remove the deceptiveness of a task. The central ques-
tion for evolving connectionist networks is then does a suitable interpretation function
exist that adequately compensates for the deception inherent in the task of evolving con-
nectionist networks so that crossover is a good operator.

There are three forms of deception when using crossover to evolve connectionist net-
works. The first involves identical networks, i.e., ones that share both a common topology
and common weights when evaluated. Because the interpretation function may be many-
to-one, identical networks need not have the same search representation. In such a situa-
tion, crossover will tend to create offspring that contain repeated components, thus losing
the computational ability of some of the parents’ hidden units. Consequently, the resulting
networks will tend to perform worse than their parents since they are not in possession of
key computational components for the task. This has been called thecompeting conven-
tions problem.17 The second form of deception involves two networks with identical
topologies but different weights. It is well known that for a given task, a single connec-
tionist topology affords multiple solutions for a task, each implemented by a uniquedis-
tributed representation spread across the hidden units.10,18The computational role each
node plays in the overall representation of the task solution is determined purely by the
presence and strengths of its interconnections. As a result, there need be no correlation
between distinct distributed representations over a particular network architecture for a
given task. This greatly reduces the possibility that an arbitrary crossover operation
between distinct distributed representations will construct viable offspringregardless of
the interpretation function used. Finally, deception can occur when the parents differ topo-
logically. The types of distributed representations that can develop in a network vary
widely with the number of hidden units and the network’s connectivity. Thus, the distrib-
uted representations of topologically distinct networks have a greater chance of being
incompatible parents.

In short, for crossover to be an appropriate operator for evolving networks, the inter-
pretation function must somehow compensate for the various types of deception described
above. The discussion above suggests that for general network induction the complexity
of an appropriate interpretation function will more than rival the complexity of the origi-
nal learning problem. Thus, the prospect of evolving connectionist networks with cross-
over goes against the current theory associated with both genetic algorithms and

connectionist networks, and better results should be expected with reproduction heuristics
that respect the uniqueness of the independently developing distributed representations.
This point has been tacitly validated in the genetic algorithms literature by a trend towards
a reduced reliance on binary representations when evolving networks.14,4 However, the
juxtaposition of distributed representations via crossover is still commonplace. For com-
plete network induction without unnecessarily restricting the search space of architectures,
alternative operators that respect the idiosyncracies of the developing architectures are
required.

3. Using an Evolutionary Program to Evolve Connectionist Networks

3.1 Advantages of Evolutionary Programming

In evolutionary programming (EP),7,5 there is no dual representation scheme as in
genetic algorithms. The actual representation evaluated by the fitness function is manipu-
lated directly. Thus no interpretation function is required. Further, evolutionary programs
generally avoid recombination of any form, choosing instead to manipulate structures by
representation specific mutation operators. EP mutation operators are more complex than
the weak form of mutation used in genetic algorithms and often are designed to respect the
idiosyncracies of the chosen representation. This provides a significant advantage for EP
methods since EP operators are supplied more task specific knowledge than typically used
in standard genetic operators.1

By using informed representation specific operators and avoiding recombination, EP is
a much better paradigm for evolving the weights and topology of recurrent connectionist
networks. These qualities allow the developing distributed representations that are unique
to each network in the population to be manipulated in a manner consistent with their
nature. Previous EP studies that evolve connectionist networks5,6 typically fall into the
same traps of architecture restriction as genetic algorithms. In the next section, we
describe GNARL, an evolutionary program that performs complete network induction.

3.2 The GNARL Algorithm

The GNARL (GeNeralized Acquisition of Recurrent Links) algorithm begins with an
initial population ofn randomly generated networks. The number of input nodes (num-in)
and number of output nodes (num-out) are fixed for a given task; the number of hidden
nodes as well as the connections among them are free to vary. Self-links as well as general
recurrent loops are permitted.

In each generation of search, the networks are ranked by a user-supplied fitness func-
tion f: N → ℜ. The flexibility of evolutionary methods allows a number of fitness metrics
to be used. After ranking, the bestn/2 individuals are saved and allowed to reproduce with
mutations each generation. Reproduction entails modifying both the weights and topology
of each parent networkN. First, thetemperature of a networkT(N) is calculated:

 Eq. (1)T N() 'U 0 1,() 1 f N()
fmax
------------– 

 =

wherefmax (provided by the user) is the maximum possible fitness for a given task and
U(0,1) is a uniform random variable over the interval (0,1). This measure ofN’s perfor-
mance is used to anneal both the structural and parametric similarity between parent and
offspring according to the network’s proximity to correct performance. Networks with a
high temperature, and thus poor performance, are mutated more severely while those with
a low temperature, and thus nearer to a solution, are mutated only slightly. This measure
encourages a coarse-grained search initially and a finer-grained search as a network
approaches a solution. The uniform random variable in the equation allows even a net-
work that is far from optimal to be mutated less severely on occasion.

A parametric mutation perturbs each weight,w, in a network,N, with gaussian noise as
follows:

 Eq. (2)

Structural mutations modify the topology ofN according to the following:

• add k1 hidden nodes with probabilitypadd-node

• deletek2 hidden nodes with probabilitypdelete-node

• add k3 links with probabilitypadd-link

• delete k4 links with probabilitypdelete-link

where eachki is selected uniformly from a user-defined range, again annealed byT(N).
When a node is added, it is initialized without connections; when a node is deleted, all its
incident links are removed. All new links are initialized to 0. Another paper2 describes the
GNARL algorithm in more detail.

w w Normal 0 T N(),()+← w N∈∀,

Ant starts here

P

Figure 1: The Tracker Task. (a) The trail is connected initially, but becomes progressively more difficult to
follow. The underlying 2-d grid is toroidal, so that position “P” is the first break in the trail. The ellipse
indicates the 7 pieces of food that the network of the second run failed to reach. (b) The semantics of the I/O
units for the ant network. The first input node denotes the presence of food in the square directly in front of
the ant; the second denotes the absence of food in this same square. No-op, from Jefferson, allows the
network to stay in one position while activation flows through recurrent links. This particular network
“eats” 42 pieces of food before spinning endlessly in place at position P, illustrating a very deep local
minimum in the search space.

facing EAST

Food No food

No-op

(a) (b)

+1 +1

Move Left Right

3.3 Experiments with GNARL

GNARL was tested on a simple control task called theTracker task.12 In this problem,
a simulated ant is placed on a two-dimensional toroidal grid and must maximize the num-
ber of food pieces it collects in a given time period (Figure 1a). Each ant is controlled by a
recurrent network with two input nodes and four output nodes (Figure 1b). Following the
original study,12 input nodes signify either the presence or absence of food directly in front
of the ant while output nodes signify the actions MOVE, turn LEFT, turn RIGHT, and
NO-OP. At each step, the action whose corresponding output node has maximum activa-
tion is executed. Fitness of a network is the number of grid positions cleared within 200
time steps. A run was considered completed when a network cleared more than 80 of the
89 pieces of food on the grid. This experiment used a population size of 100 networks.

In the first run, GNARL created a network (Figure 2) that cleared 81 grid positions
within the 200 time steps. To create this network, GNARL generated a total of 104,600
networks over 2090 generations. Figure 3 shows the state of the output units of the net-
work over three different sets of inputs. Each point is a triple determined by the activations
of the MOVE, LEFT, and RIGHT nodes of the network.* Figure 3a shows the result of
supplying 200 “food” inputs to the network – a fixed point that always executes MOVE.
Figure 3b shows the sequence of states reached when 200 “no food” signals are supplied
to the network – a collection of points describing a limit cycle of length 5 that repeatedly
executes the sequence RIGHT, RIGHT, RIGHT, RIGHT, MOVE. These two attractors
determine the response of the network to the task (Figures 3c,d). The additional points in
Figure 3c are transients encountered as the network alternates between these attractors.

However, not all evolved network behaviors are so simple.15 In a second run, GNARL
induced a network that cleared 82 grid points within the 200 time steps. In this run,

* NO-OP is not shown since it was never used in the final network.

Figure 2: TheTracker Task, first run. Network induced by GNARL after 2090 generations. Forward
links are dashed; bidirectional links & loops are solid. The light gray connection between nodes 8 and
13 is the sole backlink. This network clears the trail in 319 epochs.

6

5

4

3

14

12
11

10

9

8

7

2

13

1

0

GNARL created 79,850 networks over the 1595 generations. Figure 4 illustrates the
behavior of this network. Once again, the “food” attractor, shown in Figure 4a, is a single
point in the space that always executes MOVE. The “no food” behavior, however, is not
describable as an FSA; instead, it is a quasiperiodic trajectory of points shaped like a “D”
in output space (Figure 4b). The placement of the “D” is in the MOVE / RIGHT corner of
the space and encodes a complex alternation between these two operations (Figure 4d).

4. Discussion and Conclusions

In the original study, Jefferson et al.12 use a genetic algorithm, and hence crossover, to
evolve only the parameters of a recurrent neural network with five hidden units for the
Tracker task. They report that 1,123,942 networks were generated to evolve a network of
similar ability to the networks evolved by GNARL in the two runs. This is 10.74 and
14.07 times the number of recurrent individual networks generated respectively in the two

0
.5

1

0

.5

1

.5

.9

0
.5

1

0

.5

1

.5

9

0
.5

1

0

.5

1

.5

.9

0
.5

1

0

.5

1

.5

9

0
.5

1

0

.5

1

.5

.9

0
.5

1

0

.5

1

.5

9

0
10

20
30

0
10

20
30

0

200

400

0
10

20
30

0
10

20
30

0

00

00

(a) (b)

(c) (d)

tim
e

Right

Move

Left

Right

Move

Left

Right

Move

Left

y

x

Figure 3: Limit behavior of the network that clears the trail in 319 steps. Graphs show the state of
the output units Move, Right, Left. (a) Fixed point attractor that results for sequence of 500 “food”
signals; (b) Limit cycle attractor that results when a sequence of 500 “no food” signals is given to
network; (c) All states visited while traversing the trail; (d) The path of the ant on an empty grid. The
z axis represents time. Note that x is fixed, and y increases monotonically at a fixed rate. The large
jumps in y position are artifacts of the toroidal grid.

runs of GNARL. Thus GNARL constructed an order of magnitude fewer recurrent net-
works in both runs to solve the problem. The fact that GNARL was also manipulating the
architecture of the recurrent network while the architecture was static in Jefferson et al.12

makes this difference especially significant.
While it is tempting to use the above results to validate our claim of the inappropriate-

ness of crossover for evolving networks, there may be other explanations. For instance,
the synergy of manipulating both the parameters and topology of the network may also
contribute to the quicker learning. Consider that a fixed network architecture, if chosen
poorly, can inhibit the prompt evolution of a solution. Next, consider that in GNARL,
architectures are indirectly selected for how quickly they improve over the task. This
encourages the identification of architectures that are conducive to manipulation by the
selected mutation operators, potentially leading to quicker learning. However, by the argu-
ments in Section 2 of this paper, we feel that the mismatch between crossover and the net-
work representation should be the most significant reason for the speed-up shown by
GNARL.

The experiments above, along with additional experiments in a more complete study2

Figure 4: Limit behavior of the network of the second run. Graphs show the state of the output units
Move, Right, Left. (a) Fixed point attractor that results for sequence of 500 “food” signals; (b) Limit
cycle attractor that results when a sequence of 500 “no food” signals is given to network; (c) All states
visited while traversing the trail; (d) The x position of the ant over time when run on an empty grid.

0
.5

1

0

.5

1

.5

.9

0
.5

1

0

.5

1

.5

9

0
.5

1

0

.5

1

.5

.9

0
.5

1

0

.5

1

.5

9

0
.5

1

0

.5

1

.5

.9

0
.5

1

0

.5

1

.5

9

0
10

20
30

0
10

20
30

0

1000

2000

3000

0
10

20
30

0
10

20
30

0

000

00

00

(a) (b)

(c) (d)

tim
e

Right

Move

Left

Right

Move

Left

Right

Move

Left

y

x

demonstrate GNARL’s ability to evolve both the architecture and parameters for recurrent
neural networks for a variety of tasks without unduly restricting the architectural search
space.

5. Acknowledgments

This research was partially supported by ONR grant N00014-92-J-1195.

6. References
1. P. J. Angeline (1993).Evolutionary algorithms and emergent intelligence. Ph. D. thesis, The Ohio State

University, Laboratory for Artificial Intelligence Research, Columbus Ohio.
2. P. J. Angeline, G. M. Saunders and J. B. Pollack (1993).An evolutionary algorithm that constructs

recurrent neural networks. IEEE Transactions on Neural Networks, 5 (2).
3. R. K. Belew, J. McInerney, and N. N. Schraudolph (1990). Evolving networks: Using the genetic algo-

rithm with connectionist learning. InArtificial Life II, C. Langton, C. Taylor, J. Farmer and S. Rasmus-
sen (eds.), Reading, MA: Addison-Wesley Publishing Company, Inc., pp. 511-548.

4. R. Collins and D. Jefferson (1992). An artificial neural network representation for artificial organisms.
In H. P. Schwefel and R. Manner, editors, Parallel Problem Solving from Nature. Springer-Verlag.

5. D. Fogel (1992). Evolving Artificial Intelligence. Ph. D. thesis, University of California, San Diego.
6. D. Fogel, L. Fogel and V. Porto (1990). Evolving neural networks.Biological Cybernetics, 63, pp. 487-

493.
7. L. Fogel, A. Owens and M. Walsh (1966). Artificial Intelligence through Simulated Evolution. John

Wiley & Sons, New York.
8. D. Goldberg (1989a). Genetic algorithms and Walsh functions: Part 2, Deception and its analysis. Com-

plex Systems, 3, pp. 153–171.
9. D. Goldberg (1989b). Genetic algorithms and Walsh functions: Part 1, A gentle introduction. Complex

Systems, 3, pp. 129–152.
10. G. Hinton, J. McClelland and D. Rumelhart (1986). Distributed representations. In D. E. Rumelhart and

J. L. McClelland, editors, Parallel Distributed Processing: Explorations in the Microstructure of Cog-
nition, volume 1: Foundations. pp. 77–109. MIT Press, Cambridge, MA,

11. J. Holland (1975). Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann
Arbor, MI.

12. D. Jefferson, R. Collins, C. Cooper, M. Dyer, M. Flowers, R. Korf, C. Taylor and A. Wang (1991). Evo-
lution as a theme in artificial life: The genesys/tracker system. In Langton, C. G., Taylor, C., Farmer, J.
D., and Rasmussen, S., editors, Artificial Life II: Proceedings of the Workshop on Artificial Life. pages
549–577. Addison-Wesley.

13. N. Karunanithi, R. Das, and D. Whitley (1992). Genetic cascade learning for neural networks. In Pro-
ceedings of COGANN-92 International Workshop on Combinations of Genetic Algorithms and Neural
Networks.

14. J. Koza and J. Rice (1991). Genetic generation of both the weights and architecture for a neural net-
work. In IEEE International Joint Conference on Neural Networks, pages II-397 – II-404, Seattle, WA,
IEEE Press.

15. J. B. Pollack (1991). The induction of dynamical recognizer. Machine Learning. 7, pp. 227-252.
16. M. A. Potter (1992). A genetic cascade-correlation learning algorithm. In Proceedings of COGANN-92

International Workshop on Combinations of Genetic Algorithms and Neural Networks.
17. J. D. Schaffer, D. Whitley and L. J. Eshelman (1992). Combinations of genetic algorithms and neural

networks: A survey of the state of the art. In Proceedings of COGANN-92 International Workshop on
Combinations of Genetic Algorithms and Neural Networks.

18. T. Sejnowski and C. Rosenberg (1987). Parallel networks that learn to pronounce English text. Complex
Systems, 1, pp. 145–168.

