Objective Set Compression
Test-Based Problems and Multi-Objective Optimization

Edwin D. de Jong!' and Anthony Bucci?
! Institute of Information and Computing Sciences
Utrecht University
PO Box 80.089
3508 TB Utrecht, The Netherlands
dejong@cs.uu.nl
2 DEMO Laboratory

Michtom School of Computer Science

Brandeis University

415 South St.

Waltham, MA 02454

abucci@cs.brandeis.edu

Summary. We consider a class of optimization problems wherein the quality of
candidate solutions is estimated by their performance on a number of tests. Clas-
sifier induction, function regression, and certain types of reinforcement learning,
including problems often attacked with coevolutionary algorithms, can all be seen
as members of this class. Traditional approaches to such test-based problems use a
single objective function that aggregates the scores obtained on the tests. Recent
work, by contrast, argues that useful finer-grained distinctions between candidate
solutions are obtained when each test is treated as a separate objective, and that
algorithms employing such multi-objective comparisons show favorable behavior rel-
ative to those which do not. Unfortunately, the number of tests can be very large.
Since it is well-known that high-dimensional multi-objective optimization problems
are difficult to handle in practice, the question arises whether the multi-objective
treatment of test-based problems is feasible. To begin addressing this question, we
examine a method for reducing the number of dimensions without sacrificing the
favorable properties of the multi-objective approach. Our method, which is a form
of dimension extraction, finds underlying objectives implicit in test-based problems.
Essentially, the method proceeds by placing the tests along the minimal number of
coordinate axes that still preserve ordering information among the candidate solu-
tions. Application of the method to the strategy set for several instances of the game
of Nim suggest the technique has significant practical benefits: a type of compression
of the set of objectives is observed in all tested instances. Surprisingly, we also find
that the information contained in the arrangement of tests on the coordinate axes
reveals important information about the structure of the underlying problem.

2

Edwin D. de Jong and Anthony Bucci

1 Introduction

Certain problem domains encountered in machine learning and computational
intelligence applications involve an evaluation of candidate solutions that is
derived from a set of tests. The outcomes a candidate receives on these tests are
integrated into a scalar or vector which reflects different aspects of the quality
of the individual, and is used to make decisions about keeping, discarding,
or modifying that candidate. These domains are called test-based problems
[De Jong and Pollack, 2004].

Before introducing the ideas that follow it will be useful to carry forward

several illustrative examples of test-based problems:

3 In practice we could further differentiate between false positive and false negative

Classifier Induction: We are given a set of labeled data points and
asked to produce a model, a neural network for example, that classifies
them as well as possible. We fix a network topology and consider the task
as a search through M, the space of possible weights for that topology. In
other words, we seek a particular set of weights m* € M which minimizes
some classification error over the given data set. Each data point can be
thought of as a test which an m € M either passes (classifies correctly)
or fails (classifies incorrectly).® The error measure is an integration of this
test information into a final evaluation of m.

Function Regression: We are given a set of coordinates (z;,y;) rep-
resenting the inputs and outputs of an unknown function and are tasked
with finding a function that produces those pairs. We fix a space F' of func-
tions (for instance, genetic programs) and construe the task as a search
through F' for an f* which minimizes a measure like RMS error. As with
the classifier induction example, we can view each pair (z;,y;) as a test of
a candidate function f € F. f’s outcome on test z; is its error | f(z;) — ys|.
These individual errors are then integrated over all pairs to form an eval-
uation of f, e.g. its RMS error.

Learning Games of Strategy: We aim to learn a competent strategy for
an instance of the game of Nim. Let P, be the set of first-player strategies
and P, the set of second-player strategies. In order to see how good a
particular strategy r € Py is, we play it against a variety of second-player
opponents s € P,. Each opponent s can be thought of as a test of r: r plays
s with the outcome being a win or loss for r. These outcomes across many
P; players can then be integrated into an evaluation of r, for instance its
worst-case outcome.

Coevolutionary Algorithms: Roughly speaking, coevolutionary algo-
rithms search through instances of two or more distinct roles, utilizing
individuals playing one role to evaluate individuals playing the other.
A seminal example is Hillis’ coevolution of sorting networks (one role)
against sets of unsorted lists (a second role which Hillis called parasites)

outcomes, but for the sake of the example we are simplifying matters.

Objective Set Compression 3

[Hillis, 1990]. Each possible sorting network is a candidate solution whose
sorting abilities can be partially tested by a parasite. To put it differently, a
sorting network’s evaluation is derived from its outcomes against a number
of parasites acting as tests.

The connections between coevolution and multi-objective optimization are
worth exploring in more detail. Recent work examining these connections has
produced a theory which suggests that any test-based problem can be viewed
as a multi-objective optimization problem. In this chapter, we aim to explore
some of the outcomes of this point of view. In the remainder of this section we
will explore the intellectual source of these ideas and then give an overview
of the rest of the chapter.

It is worth pointing out that the method described here can be viewed as
performing dimension extraction in the sense of [Bucci et al., 2004]. The no-
tion of dimension reduction has recently been applied in other work in Evolu-
tionary Multi-Objective Optimization; see, for instance, [Deb and Saxena, 2006]
and [Saxena and Deb, 2007]. Also see the discussion of feature selection and
feature extraction in the chapter by Brockhoff et al. in this volume.

1.1 Coevolution, Test-Based Problems and MOO

Traditionally, coevolutionary algorithms have integrated outcomes against
multiple tests into a single fitness value, often by averaging or maximizing
over all values.* That is, a candidate solution interacts with several test indi-
viduals and is then given a fitness that is an average or the maximum of its
results against these tests (for a discussion on treating interactions in Coop-
erative Coevolution as tests, see [Bucci and Pollack, 2005]).

Both [Ficici and Pollack, 2001] and [Noble and Watson, 2001] argue that
a finer-grained comparison can be made by viewing each test as its own ob-
jective. Rather than averaging or maximizing over all outcomes, the idea is to
treat each outcome as a separate component of a vector of outcomes. Then,
to compare two candidate solutions, the same Pareto dominance or Pareto
covering relations utilized in multi-objective optimization are employed.

The process of transforming single-objective problems into multi-objective
problems by separating the different criteria contributing to the quality of in-
dividuals has been named multi-objectivization [Knowles et al., 2001]. The
application of this idea within coevolution is called Pareto coevolution. In
Pareto-coevolution, each test in the population is treated as if it were an
objective in a massive multi-objective optimization problem.® For instance,

4 Simple fitness proportional coevolutionary algorithms typically use a (weighted)
average of outcomes as fitness. Cooperative Coevolutionary algorithms sometimes
use the maximum outcome as fitness value [Potter and Jong, 2000].

5 A critical difference from evolutionary multi-objective optimization being that in
coevolution not all objectives are in hand in advance, but rather are discovered
during search.

4 Edwin D. de Jong and Anthony Bucci

if there were a population of 100 parasites in the sorting network example,
a Pareto coevolutionary approach might evaluate a sorting network with a
100-dimensional vector of numbers, each number an outcome against a dif-
ferent parasite. Initial approaches to Pareto coevolution bought finer-grained
comparison information at the cost of large outcome vectors like this; in-
creasing the dimensionality of the objective space generally complicates the
search problem. In other words, while Pareto coevolution has advantages, for
instance its mitigation of cycling dynamics, large outcome vectors introduce
new problems; see also the chapter by Ficici in this volume. As a result, there
has been a drive to reduce the size of these vectors without losing too much
of what was gained by using them in the first place.

Along these lines, [De Jong and Pollack, 2004] presents empirical results
suggesting that a Pareto coevolutionary algorithm could find what were
dubbed the underlying objectives of a problem. These are hypothetical ob-
jectives that determine the performance of candidate solutions without the
need to test candidates against all possible tests. [De Jong and Pollack, 2004]
applies a two-population Pareto coevolutionary algorithm, DELPHI, to in-
stances of a class of abstract test games. Figs 13 and 15 of that work suggest
that evaluator individuals® evolve in a way which tracks the underlying objec-
tives of the problem domain. The results suggest that the algorithm is sensitive
to the presence of underlying objectives even though it is not given explicit
information about those objective. [Bucci and Pollack, 2003] makes a similar
observation, also empirical though using a different algorithm; Fig. 5 of that
work suggests a similar sensitivity to underlying objectives. In both cases,
clusters of individuals, rather than single individuals, move along or collect
around the objectives of the problem domain. The problem domains consid-
ered, namely numbers games [Watson and Pollack, 2001], were designed to
have a known and controllable number of objectives, but the algorithms used
in these two studies did not rely on that fact. The work therefore raises the
question of whether underlying objectives exist in all problem domains, and
whether search learning algorithms can discover them.

A partial answer to this question is found in the notion of coordinate
system [Bucci et al., 2004]. Coordinate systems, which were defined for a class
of test-based problems,” can be viewed as a formalization of the empirically-
observed underlying objectives of [De Jong and Pollack, 2004]. To elaborate, a
coordinate system consists of several azes. Fach axis is a list of tests ordered
in such a way that any candidate can be placed somewhere in the list. A
candidate’s placement is such that it passes all tests before that spot and fails
all tests after it. For this reason, an axis can be viewed as measuring some
aspect of a candidate’s performance: a candidate that places high on an axis is
“better than” one which sits lower in the sense that it passes more tests (more

5 What we are here called tests.
7 Specifically, problems with a finite number of candidates and a finite number of
binary-outcome tests.

Objective Set Compression 5

of the tests present in the axis, not more tests of the problem as a whole).
Formally, an axis corresponds to a numerical function over the candidates,
in other words to an objective function. It can be proven [Bucci et al., 2004]
that every problem of the considered class possesses at least one coordinate
system, meaning it has a decomposition into a set of axes. In short, every such
problem has some set of objective functions associated with it, one for each
axis in a coordinate system for the problem.

Besides defining coordinate systems formally, [Bucci et al., 2004] gives an
algorithm that finds a coordinate system for a problem domain in polynomial
time. The algorithm, though fast, is not guaranteed to produce the smallest-
possible coordinate system for the problem. Finite domains must have a min-
imal coordinate system, but in general even finite domains can have distinct
coordinate systems of different sizes. The algorithm is not coevolutionary per
se, as it examines the outcomes of tests on candidates. It is therefore applicable
to the entire class of test-based problems.

1.2 Chapter Overview

To summarize, recent theoretical work on coevolutionary algorithms has elu-
cidated a theory of underlying objectives for test-based problems which es-
tablishes a conceptual link between multi-objective optimization and coevolu-
tion. We can now view coevolution as a form of multi-objective optimization
in which not all objectives are explicitly given a priori, but are nevertheless
present theoretically and can be extracted. Although this theory originated
in coevolutionary algorithms research, it is focused on problem structure and
indifferent to which search algorithm is used. Coordinate systems can be ex-
tracted from any test-based problem, which includes classifier induction, func-
tion regression, or game strategy learning problems.

However, there are two questions left unaddressed by this story. First, that
minimal coordinate systems exist as theoretical objects does not guarantee
they can be extracted algorithmically; previous work gave an algorithm which
could find some coordinate system, but not necessarily a minimal one. Sec-
ondly, even if they could be found, there is no guarantee the extracted coordi-
nate systems are meaningful, i.e. that their structure relates to characteristic
features of the problem. With these questions left open, it is possible coordi-
nate systems are simply mathematical curiosities that have limited relevance
in practice. The aim of understanding underlying objectives and establishing
a bridge between test-based problems and multi-objective optimization would
not be met.

This chapter will focus on these two questions by developing and apply-
ing an exact coordinate system extraction algorithm to small instances of
the game of Nim. The exact algorithm is guaranteed to identify a minimum-
dimensional coordinate system, but can only be applied to small problems
due to its computational complexity. After giving the necessary background,

6 Edwin D. de Jong and Anthony Bucci

we will describe the exact extraction algorithm and prove it produces a min-
imal coordinate system, giving a positive answer to the question of whether
minimal coordinate systems can be discovered algorithmically. We argue that
the extracted coordinate system can be interpreted as compressing objective
information of the problem, in the sense that knowing where a candidate so-
lution lies in a coordinate system is equivalent to knowing how that candidate
performs against all possible tests. Since the number of axes in a coordinate
system can be no more than the number of tests, but may be significantly
smaller, a minimal coordinate system is a maximally-compressed view of can-
didate solutions’ performance.®

In the game of Nim, where candidates are players and tests are potential
opponents, we observe that a substantial compression does take place. Mini-
mal coordinate systems for all tested instances of Nim have significantly fewer
axes than tests. We also observe that the axes can be interpreted: each axis
directly tests a candidate’s strength at a particular game configuration. It is
worth noting that, although each axis tests on a corresponding game configu-
ration, not all game configurations correspond to axes. There are significantly
fewer axes than game configurations, too. This correlation between axes and
game configurations is noteworthy given that the coordinate system extrac-
tion algorithm is insensitive to details of the application domain. There is
no reason to expect that an axis, while theoretically meaningful, would corre-
spond in an intuitively-meaningful way with a candidate player’s ability at the
game. Nevertheless, across the tested instances of Nim, extracted coordinate
systems consistently represent ability at specific game configurations. These
results validate that the notion of coordinate system is not just a theoretical
curiosity; rather, coordinate systems give a view into performance that is both
compressed in size and intuitively meaningful.

In short, this set of ideas establishes fruitful connections among multi-
objective optimization, coevolution, machine learning, and game strategy
learning techniques. The theoretical and algorithmic notion of coordinate sys-
tems provides a way to view a test-based problem as a sort of multi-objective
problem, allowing conceptual cross-fertilization among these disciplines. The
results on Nim suggest that this conceptual link can go both ways: treating
Nim strategy learning as a multi-objective optimization problem can yield
insights into the nature of the game itself as well as how to learn or evolve
strategies to play it.

8 Maximally-compressed with respect to our set of assumptions, of course — natu-
rally there are many ways to compress this information.

Objective Set Compression 7

2 Preliminaries

2.1 Definition of Problem Structure

Our notion of problem structure is based on the observation that while the
number of possible tests in a problem can be very large, these tests may test
on a limited number of underlying objectives [De Jong and Pollack, 2004]. The
question we aim to address is how these underlying objectives may be iden-
tified. If this is possible, it permits accurate evaluation using only a limited
number of tests. In the following, we consider how a minimal set of objec-
tives can be identified for which the information provided is equivalent to the
information provided by the set of all possible tests.

Let S be the set of candidate solutions in a problem; these can for example
be classifiers, or game playing agents. Let T denote the set of tests. In the
example of classification these would be test points; in game playing they
would be opponents. A test can be viewed both as an object T € T or as
a function T' : $§ — {0,1} that returns the outcome of the test for a given
candidate solution. We will write the outcome of a test T' € T for a candidate
solution S € $ as T'(S).

Definition (Objective): An objective is a function that assigns a value to
candidate solutions which measures an aspect of its performance: 0 : § — R.

Without loss of generality, we will assume that higher values are to be pre-
ferred. An ordered set of objectives O.S can be viewed as a vector function that
accepts a candidate solution and returns an outcome vector, where each ele-
ment 4 is the outcome of objective OS;: 0S(S) = 051(S5), 055(95),...,08,(S).

The set of all tests T can be viewed as a set of objectives; each test can be
viewed as a binary objective whose value for a given candidate solution S is
given by the outcome of the test T'(S). Since T is given as part of the problem
formulation, the corresponding objectives will be called the initial objectives:

Definition (Initial Objectives): Oy = T.

The question of identifying a minimal set of objectives is thus reduced to
the problem of compressing the initial objectives to a minimal set of objectives
that provides equivalent information, as we define next.

2.2 Objective Compression

A given set of objectives O1 can be compressed to yield an equivalent but
smaller set of objectives O2. For this purpose, the notion of equivalence is
defined as follows.

Definition (Equivalence): We define two objective sets O1, O2 to be
equivalent, written equiv(01,02), if the following criteria hold:

e Information preservation. This criterion holds if a mapping f exists such
that VS € $: f(02(S)) = O1(S). If this is the case, the objective values

8 Edwin D. de Jong and Anthony Bucci

assigned by O1 can be reconstructed from the objective values assigned
by O2.

e Order preservation. For the transformation to be meaningful, the second
set of objectives should result in the same preference information. Though
dependent on the preference function, this will generally be achieved if
3 : Oli(z) > O1;(y) <= 3j : 02(z) > 02;(y), where z,y € 3,
1<i< |01}, and 1< j <02

2.3 Order Preservation: Pareto-dominance

As an example, we demonstrate that the second condition is sufficient to
guarantee order preservation for the preference function of Pareto-dominance.
The Pareto-dominance preference function states that a candidate solution x
is preferred over another candidate solution y, or dominates it, with respect

o1
to the objectives in O1, written z > y, if:
Vi: O1;(z) > O1;(y) A Ji: Ol;(z) > O1;(y) with 1 <i < |O1].

o1 02
If two objective sets O1 and O2 are equivalent, then x > y <= = >
y. This can be seen as follows:

Assume z 2—1 y. Then Vi : OL;(z) > O1;(y) and Ji : O1;(z) > O1;(y).
Therefore, 3 : O1;(y) > O1;(x). Thus, due to the order preservation condi-
tion, 3 : 02;(y) > 02;(z), and hence Vj : 02;(z) > 02;(y).

Furthermore, since 3i : O1;(z) > O1;(y), the condition guarantees that
3j : 02;(z) > 02;(y). Since we have Vj : 02;(x) > 02;(y) and 3j : 02;(z) >

02
02;(y), it follows that > y, and thus the forward implication has been
shown. The backward implication is analogous.

2.4 Problem Structure

Assume we are given a problem P with initial objectives Ojpnjs- Then P’s
problem structure is defined by the smallest set of objectives Omin that is
equivalent to Ojpijt:

Definition (Problem Structure):0,,;, = arg (I)r-lie% |O;| such that equiv(O;, Oinit),

where O; € O, and O is the set of all possible objective sets given some rep-
resentation of objectives.

We define the evaluation dimension of a problem as the lowest number of
dimensions d for which a correct coordinate system exists, or equivalently as
the cardinality of the problem structure:

Definition (Evaluation Dimension): deyqi() = |Omin|

Objective Set Compression 9
2.5 Coordinate Systems for Test-Based Problems

In the following, we present a representation for objectives in test-based prob-
lems. Based on this representation, a search algorithm will be used to identify
the smallest objective set that is equivalent to the initial objectives, and which
therefore represents the structure of the problem.

The objective sets we will consider take the form of coordinate systems.
Each axis in a coordinate system represents an objective. The position of a test
on an axis is determined by which candidate solutions are defeated by the test.
We will write SF(T,S) to indicate that test T' defeats candidate solution S,
meaning it assigns a zero outcome to the candidate solution. Failing a solution
S is written SF(S).

T3 @]
T4
. .
T1 T2

Fig. 1. Example of a coordinate system. Monotonicity: T'2 defeats strictly more can-
didate solutions than T'1. Compositionality: T4 defeats all and only those candidate
solutions that are defeated by either T'1 or T'3.

Definition (Solution Failure): SF(T,S) <= T(S) = 0. Solution fail-
ures can be grouped together in sets. We write SF(T') to denote the set of all
solution failures made by T: SF(T) = {SF(S)|S € $ A SF(T,S)} The set of
all possible solution failures is named SF'S: SF'S = {SF(5)|S € $}

We now proceed to define the elements of a coordinate system.

Definition (Axis): An axis A represents an ordered set of increasing so-
lution failure sets: A = Ay, As,... A, with A; C SF'S such that Vi < j : 4; C
A;. The elements A; of an axis will be called coordinates.

Definition (Coordinate System): A coordinate system C'S is an ordered
set of axes: C'S = A, A2,... A™.

Definition (Position): A position P in an n-dimensional coordinate sys-
tem is an ordered set of coordinates, one for each axis: P = A}, A%,... A}.

The coordinate systems that will be defined feature the following two prop-
erties, which motivate viewing them as coordinate systems, see Figure 1:

10 Edwin D. de Jong and Anthony Bucci

Definition (Monotonicity): If test T'1 has a higher position on an axis
than T'2, this implies that 7'1 defeats all candidate solutions defeated by 72,
in addition to one or more other candidate solutions.

Definition (Compositionality): If test T'3’s position is spanned by two
tests T'1 and T2 which reside on different axes, i.e. T'3’s position is (1'1,72),
then the set of candidate solutions defeated by 7'3 is the union of the sets of
candidate solutions defeated by T'1 and T2: SF(T3) = SF(T1) U SF(T2).

Both tests and candidate solutions can be embedded into a coordinate
system:

Definition (Test Embedding): The embedding CS(T) of a test T in
a coordinate system CS is the position obtained by choosing the highest
coordinate on each axis for which 7T still makes all corresponding solution
failures: CS(T) = {A5 € CS,1<i <n|SF(T)2 A: A Pk >j:SF(T)D
Ai}.

Definition (Interpretation of Test Positions): The set SF(P) of solu-
tions defeated by a test at position P is obtained by taking the union of the so-
lution failure sets represented by the position’s coordinates: SF(P) = 1<L1J<n13i.

Definition (Solution Embedding): The embedding CS(S) of a candi-
date solution S in a coordinate system C'S is the position obtained by choosing
the highest coordinate on each axis for which S is not included in the corre-
sponding solution failures: CS(S) = {4} € CS,1<i<n|S¢ A5 A Fk>
j:S¢ A;}

Since a coordinate system represents an objective set, C'S(S) may be in-
terpreted as the objective vector for candidate solution S; each axis represents
one objective, and the coordinate on the axis represents the value of the ob-
jective. In order to map coordinates into numerical values, any monotonic
assignment of coordinates to values may be used, for example the index of the
coordinate on the axis can be employed such that a candidate solution with
position (A}, A2) would have objective values (8, 5).

Definition (Interpretation of Solution Positions): The set T'S(P) of
tests solved by a candidate solution at position P = CS(S) is obtained by
assembling all tests whose coordinates do not exceed that of the solution:
TS(P)={T € T|pA* € CS(T)|A* > P;}.

Definition (Correctness): A coordinate system CS is correct for a given
set of tests T'S C T, written correct(CS,TS), if for each test the set of solution
failures equals the set of solution failures represented by the embedding of the
test: VI € TS : SF(CS(T)) = SF(T)

Our central theorem states that the objectives represented by a correct
coordinate system are equivalent to the initial objectives:

Theorem (Correctness of coordinate systems): correct(CS, Oinit) =
equiv(CS, Oinit)

Proof: The coordinate systems that have been defined above are a specific way
to represent objectives for a test-based problem. We will now demonstrate

Objective Set Compression 11

that the objectives represented by a correct coordinate system are always
equivalent to the initial objectives. Therefore, by restricting the search to
correct coordinate systems, it is guaranteed that any coordinate systems found
will be equivalent to the initial objectives. We can thus perform objective
compression by searching for the smallest correct coordinate system.

Given a correct coordinate system C'S, proving equivalence to the initial
objectives Oipnit requires establishing the properties of information preserva-
tion and order preservation. Regarding information preservation, it is to be
shown that a mapping f exists such that VS € $: f(CS(S)) = Ounit(S). In
other words, the outcomes {T'(S)|T € T} need to be reconstructed from the
coordinates of S. Thus, f can be based on the composition of (1) the embed-
ding function C'S(S), which determines the position of a candidate solution
in the coordinate system, and (2) the interpretation function T'S(P), which
determines the tests solved by a candidate at position P: T'S(C'S(S)). This
function returns the tests solved by S. Given all tests solved by S, the out-
come of any test can be determined by seeing whether the test is part of this
set. This yields the desired reconstruction function:

1 if T; e TS(CS(S))
0 otherwise

1) ={

Next, the property of order preservation is to be shown. Assume 3i
Ohnit,i () > Ohnit,i(y). Thus 3T € T : T(x) > T(y); since we are assuming
binary tests, this means T'(z) A —=T'(y). Given that CS is a correct coordi-
nate system, we know that T'S(C'S(y)) yields the tests solved by y, and must
therefore contain a test that is not present in T'S(C'S(z)). Since the axes are
monotonic, this implies y must have a higher coordinate for some axis.

Conversely, assume y has a higher coordinate than x for some axis:
TS(CS(y)) > TS(CS(x)). Then there must exist a test solved by y that
is not solved by x. Thus, y has a higher coordinate for the initial objective
corresponding to this test. 0O

3 The Exact Algorithm and Nim

3.1 Exact Algorithm

We present an algorithm that performs exact identification of problem struc-
ture, meaning the dimensionality of the extracted coordinate system is guar-
anteed to be minimal. The algorithm operates by considering all possible
coordinate systems in order of increasing dimensionality, and returning when
a correct coordinate system has been found. This guarantees that the smallest
possible coordinate system, measured in terms of its dimensionality, will be
found.

As described, a coordinate system consists of axes whose coordinates rep-
resent solution failure sets. Given a set of candidate solutions, the number of

12 Edwin D. de Jong and Anthony Bucci

all solution failure sets is the power set of this set, and thus exponential in
the size of the solution set. Considering all assignments of all solution fail-
ure sets to axes is therefore prohibitive. However, the only requirement for a
coordinate system is that it can represent the given set of tests. Thus, the co-
ordinate system must contain positions corresponding to the solution failure
sets represented by the tests, but need not contain positions corresponding
to other solution failure sets. This greatly reduces the search problem; due to
this observation, we can restrict the search by only considering subsets of the
solution failure sets represented by tests.

Since the number of all possible coordinate systems grows very quickly,
the exact algorithm that will be presented will in general still not be feasi-
ble for problems of realistic size. Its purpose however is to permit studying
the structure of small example problems, and to provide a starting point for
efficient structure approximation algorithms.

The algorithm starts from an empty coordinate system. Each axis is ini-
tially defined by two virtual tests: ORG (origin), which passes all solutions,
and INF (infinity), which defeats all solutions. To search for a correct coor-
dinate system, all tests are visited in turn. For each test, it is determined
whether the test can be placed in the current coordinate system; if not, the
coordinate system is adapted to permit representing the test. If this fails given
the current dimensionality because one or more additional axes are required,
the dimensionality is increased.

The placement of tests is stored in a state vector, representing the current
placement of each test. Two search operators are employed: find_first_full_state(state)
finds the first correct coordinate system from the current state by visiting the
tests in turn and placing each test correctly, adapting the coordinate system
where necessary. inc_full_state increases the current state; this operator is
applied when the current state does not permit the construction of a correct
coordinate system. By continuing the search for a correct coordinate system
while the state so far permits this and increasing the state once it is found
that it does not permit this, a correct coordinate system of the given dimen-
sionality will be found if it exists. Since the dimensionality is incremented
only if no correct system is found, the first coordinate system found by the
algorithm is guaranteed to be minimal. The algorithm therefore returns once
a correct coordinate system is found. The pseudocode of the main loop of the
algorithm is as follows:

calculate_options(T) accepts a test and for each axis ¢ determines the
highest coordinate for which the test still makes all corresponding solution
failures. These coordinates are written T}, , and represent the embedding of
the test in the partially constructed space. The successor of a coordinate
At (T) is written A%, (T). The coordinate of a test on axis i must lie

min . max
between A!. (T) and A? .. (T). Potentially, a new coordinate must be cre-

ated. The options for such a new coordinate are constrained by A%, (T') and

At (T); the solution failure set it represents must be a superset of the former

Objective Set Compression 13

FIND_STRUCTURE()
1: for num_dims = 1 to num_tests do

2: init_azes()

3: state =[0,0,0,0,0]

4 for ¢ = 1 to num_tests do

5 calculate_options(T)

6: init_test_state()

7: end for

8: while !done do

9: if find_first_full_state(state) then

10: done = true! {success; break outer for loop and return}
11: else

12: ok = inc_full_state

13: if lok then

14: done = true {failure; increment num_dims}
15: end if

16: end if

17: end while

18: end for

and a subset of the latter. Therefore, the algorithm must search the powerset
of A:nax (T) \ A;nin (T)

init_test_state(T) places a test at the highest possible existing coordi-
nates) ie. Arlnin (T)J A?nin(T)7 st A&in (T)

find_first_full_state(state) looks for the first feasible state from the
current state by ensuring a correct placement for each test in turn. This is
done by calling inc_test_state until a correct placement for a test is found.

inc_test_state(i) increments the state element corresponding to test
T, and fails if this exceeds the range for this state element. If the increment
succeeds, the element represents a new placement for the test. The order of
the options considered is as follows: First, the test is placed at the position
that its embedding would indicate, i.e. AL, (T), A2, (T),..., A%, (T), using
INIT-TEST-STATE(T). The next n options consider placing the test on one
of the n axes. If this succeeds, the test defines a new coordinate for the axis
concerned. Finally, all combinations of solutions failures in A%, (T)\ A%, (T)
are considered.

inc_full_state moves to the next state by increasing the state vector.

3.2 The Game of Nim

We will explore the notion of problem structure and its extraction by applying
the search algorithm to the Game of Nim.

Nim originates from the Chinese game Tsyanshidzi (picking stones game).
The first European reference to a possible Nim-type game dates from 1503
[Singmaster, 1996]. The name is thought to stem from the German imperative

14 Edwin D. de Jong and Anthony Bucci

‘nimm’ (take), and is proposed in [Bouton, 1902]. The game also features in
Alain Resnais’ 1961 movie Last Year at Marienbad.

The game starts by placing a number of rows of small objects such as
matches on a table, where each row is called a counter. The players take
turns, and on each turn must take one or more matches from a single row.
The player to take the last match wins the game. In the misére version of the
game, the outcome is reversed.

Nim is an #mpartial game, meaning each player has the same available
moves in every position. An interesting result of combinatorial game theory is
the Sprague-Grundy theorem, independently discovered by Roland P. Sprague
[Sprague, 1936] and Patrick M. Grundy [Grundy, 1939]. The theorem states
that every impartial game is equivalent to a nim position, augmented with
the possibility of adding matches.

In 1901, the Harvard mathematician Charles L. Bouton presented an op-
timal strategy for the game of Nim [Bouton, 1902]. To compute the strategy,
the counters of a Nim position are written below one another in binary no-
tation. Next, the columns of the numbers are summed. If all sums are even,
the game position is a safe combination. To play optimally, the player must
merely select a move that results in a safe combination.

3.3 Results

We apply the structure extraction algorithm to Game of Nim versions with
the following initial configurations: [1 3], [4], and [2 2].° We employ the misere
version of the game, which has been noted as being more difficult to analyze.
For all of these small game configurations, the structure extraction algorithm
took less than a second. However, due to the high computational complex-
ity of the exact algorithm, larger versions of the game quickly lead to high
computational requirements.

To apply the structure extraction algorithm, we first generate all strate-
gies for a game. No distinction is made between first and second players; for
both players, all combinations of the legal moves in all game configurations
are considered. The complete set of strategies is then played against itself
in a full squared comparison. Since some game configurations never occur
for some strategies, some players will behave identically while having differ-
ent strategy representations. Therefore, any first players with outcome vector
identical to other first players are removed, and likewise for duplicate second
player. This yields an outcome matrix representing all unique first and sec-
ond players, which serves as input to the structure extraction algorithm. The
tests in the matrix are first sorted according to the number of solution failures
they represent; since a complete search is performed, this does not affect the

 The notation [z1z2] means this game instance has two piles of sticks and the
starting configuration has x1 sticks in the first pile and z2 sticks in the second
pile.

Objective Set Compression 15

dimensionality of the outcome, but it may serve to consider the more likely
coordinate systems first.

Results for Nim [1 3]

The first version we apply the algorithm to is the [1 3] configuration, which
has a row containing a single match and one containing three matches. There
are 7 non-empty game configurations. Different configurations have different
numbers of legal moves; the full number of strategies is 144. However, after
removing first and second players with duplicate outcome vectors, 6 first player
strategies (candidate solutions) and 9 second player strategies (tests) remain.
The resulting outcome matrix for unique strategies is shown in table 1.

TO0|'T4|T8|T24|T28|T32|'T48|T52|T56
S0 1 {011 {0 |1 1 |0 |1
S1 (0|0 |00 [0 |0 |0 |0 |0
S2 1 1 1 j1 {1 1 |1 |1 (1
S3 |1 jrjr 0 (0 (0 |1 j1 1
S72)1 |0 |0 1 |0 |0 |1 |0 |0
S75(0 |0 j0 (0 (0 |0 |1 |1 |1

Table 1. Outcome matrix of unique strategies for Nim[1 3].

The result of applying the structure extraction algorithm to the outcome
matrix for this game is a two-dimensional coordinate system; see Table 2.
The first axis consists of tests T48, TO, and T24, representing the solution
failure sets {S1}, {S1, 575}, and {S1, 575,53}, in addition to ORG and INF.
Interestingly, all coordinates on the axis thus correspond exactly to actual
tests, rather than being arbitrary subsets of solution failures. The same holds
for the second axis, containing tests 756 and 7'52.

Since a correct coordinate systems embeds all tests onto positions that
correspond to their outcomes, a question is where the four tests that do not
lie on the axes are located. This is shown in Table 3 (left) and visualized in
Figure 2. For any of these tests, the set of solutions defeated is the union of
the solution failure sets of its coordinates.

A next question is where the candidate solutions are embedded in the
space. This is shown in Table 3 (right) and Figure 3. The embedding of the
solutions shows how two objectives are sufficient to evaluate the solutions and
express the relations between them. For example, it is immediately seen that
solution S2 is the optimal solution, as it has the highest coordinate on both
dimensions. Comparing this with the initial situation in which all nine tests are
objectives demonstrates the utility of objective compression: by identifying the
compositionality implicitly present in the problem, the number of objectives
required for evaluation is reduced from nine to two.

16 Edwin D. de Jong and Anthony Bucci

dim 1|ORG|T48|T0|T24|INF
S1 1 0 |00 |0
S75 |1 1 (0|0 |0
S3 1 1 (110 |0
S0 1 1 1|1 |0
S2 1 1 1|1 |0
S72 |1 1 (111 |0
dim 2|ORG|T56|T52|INF
S1 1 0 |0 |0
S72 |1 0 |0 |0
S0 1 1 10 |0
S2 1 1 41 |0
S3 1 1 |1 |0
S75 |1 1 |1 |0

Table 2. The two-dimensional coordinate system for Nim[1 3].

test|coordinates

test [coordinates S0 |(T24 , T56)
T8 |(T0, T56) S1 |(ORG, ORG)
T4 |(TO, T52) S2 |(T24, T52)

T28|(T24 , T52) S72|(T24 , ORG)
S75/(T48 , T52)

(

(

((
T32((T24 , T56) S3 |(To, T52)

((

(

Table 3. Left: Coordinates of the tests not lying on the axes. Each test is precisely
a composition of two other tests; see outcome matrix and text. Right: Coordinates
of the candidate solutions.

T52 @ 0T4 0T28
T56 @ 0T8 0T32
)))
T48 TO T24

Fig. 2. Embedding of the tests into the coordination system found for Nim[1 3].

Objective Set Compression 17

T52 @ 0575 083 032
T56 @ .SO
S1 S72
T48 TO T24

Fig. 3. Embedding of the candidate solutions into the coordination system found
for Nim([1 3]. Two dimensions are sufficient to evaluate the solutions and express the
relations between them, as compared to the original nine dimensions required when
using all tests as objectives. This substantial reduction demonstrates the potential
value of objective compression.

Apart from the potential computational advantage offered by objective
compression, an interesting theoretical question is whether the automatically
extracted coordinate system can tell us something about the structure of a
problem. To this end, we now interpret the axes that have been identified.

Table 4 shows the actions selected by the axis tests in all of the seven
different game configurations that can occur in Nim[1 3], the resulting game
configuration after the action, and the outcome for the test. It is immedi-
ately seen that the tests in dimension 1 only differ in a single configuration,
viz. configuration 3, which represents the game state [0 3], i.e. a single row
with three matches. The first test on the axis, T48, removes all three matches
and thus leaves no matches, thereby losing the game. T0 leaves two matches,
so that its outcome depends on the opponent strategy. Finally, the last strat-
egy on the axis, 724, leaves a single match, and thereby secures a sure win.
Thus, the particular coordinate system that has been extracted has a clear
interpretation in this dimension: the objective represents the quality of the
move selected by a test in game situation [0 3].

For the second dimension (Table 5), the result is similar. The tests only
differ in game situation 6, which represents the configuration [1 2]. The tests
select increasingly good moves, leaving [0 2] (result depending on opponent),
and [1 0] (sure win) respectively.

Results for Nim [2 2]

Nim[2 2] has 8 configurations, resulting in 288 strategies. The resulting out-
come matrix contains 36 unique tests and 6 unique candidate solutions. The
extracted minimal coordinate system is 4-dimensional; thus, a high degree of
compression is observed. As in Nim[1 3], all dimensions can be interpreted,

18 Edwin D. de Jong and Anthony Bucci

C1|C2|C3|C4|C5|C6|C7|After|Result
T48{1 |1 (3 (1 |1 |1 |1 |[0 O] [sure loss
TO (1 {1 1 |1 |1 |1 |1 [[02] |depends
T24[1 |1 |2 [1 |1 |1 |1 |[0 1] |sure win

Table 4. Actions selected by the tests on the first axis in the seven game configu-
rations. The axis apparently tests on the ability to select a good action in situation
3, which represents configuration [0 3]. Moving down the table, the resulting config-
urations show the increasing quality of the moves.

C1|C2|C3|C4|Cb5|C6|C7|After|Result
T56(1 |1 (3 |1 (1 |3 |1 |[0 2] |depends
T52(1 |1 (3 |1 |1 |2 |1 |[10] |sure win

Table 5. Actions selected by the tests on the second axis. Again, the axis con-
cerns the behavior of tests in a single configuration: [1 2], and the tests represent
increasingly good moves for this configuration.

and the different options for a dimension always concern a single game con-
figuration.

Results for Nim [4]

Nim[4] has four configurations, and 24 strategies. There are six unique tests
and five unique candidate solutions. The problem is two-dimensional, and as
for the previous two problems the dimensions have a clear interpretation. The
coordinate system and the embedding of the candidate solutions is visualized
in Figure 4.

T16

T12

T20 T8

Fig. 4. Embedding of the candidate solutions into the coordination system found
for Nim[4].

Objective Set Compression 19

4 Discussion and Conclusions

We have presented an algorithm that is able to extract the underlying objec-
tives of an arbitrary test-based problem. Any test-based problem has under-
lying objectives. Viewing each test as a separate objective yields an initial
objective set. By compressing this initial set into a smaller number of objec-
tives, meaningful underlying objectives can be obtained. The algorithm that
has been presented delivers a set of objectives that are guaranteed to be min-
imal in number, yet which provide evaluation information that is equivalent
to the initial objective set.

The optimal dimension extraction algorithm has been applied to small
versions of the Game of Nim. A main finding is that by extracting the under-
lying objectives, the number of required objectives can be drastically reduced.
In other words, the extraction algorithm substantially decreases the dimen-
sionality of the objective space, without loss of information. For example, for
a version of the game with 36 distinct tests, the initial set of 36 objectives,
was reduced to an equivalent objective set containing only 4 objectives. This
demonstrates that the notion of objective set compression is not merely a the-
oretical possibility; in the example domain that has been explored, the number
of objectives can be greatly reduced. While there is no guarantee that the rate
of compression in other games will be comparable, it has been shown that a
substantial reduction of the number of objectives is possible at least for some
problems.

Objective compression is a new analytical tool that has several applica-
tions. First and foremost, it may serve to increase our insight into existing
problems. By identifying the underlying objectives of a problem, intrinsic in-
formation about the structure of the evaluation function implicit in the prob-
lem is revealed. Our results with the Game of Nim showed that the underly-
ing objectives can be highly interpretable; in all cases, objectives represented
orthogonal dimensions of performance in the game where each subsequent po-
sition on an axis represented a better strategic choice, and where each axis
corresponded to a single state that may arise during play.

A second consequence of theoretical interest is that any test-based problem
is characterized by an evaluation dimension: the minimal number of objectives
for which an objective set exists that is equivalent to the initial objective
set. The evaluation dimension forms an intrinsic property of the problem.
Thus, an open question for any test-based problem is what its evaluation
dimension is; we expect the evaluation dimension has implications for the
complexity of evaluation and search. An open question is how the evaluation
dimension or the problem structure relate to existing notions of dimensionality
or complexity, such as the teaching dimension [Goldman and Kearns, 1995].

In addition to these theoretical implications, problem structure extraction
may find applications in learning and search. If the relevant dimensions of
performance for a problem can be identified or estimated, this may help to
select which tests are to be used in evaluation. An illustration of this principle

20 Edwin D. de Jong and Anthony Bucci

has been given in [De Jong and Bucci, 2006], which details a coevolutionary
algorithm that guides selection using a coordinate system extracted from the
population.

The algorithm presented here guarantees that the coordinate systems that
are produced will be of minimum size, and thus have a number of objectives
equal to the evaluation dimension. While this algorithm is of theoretical in-
terest in that it can be used to identify minimal-dimensional objective sets for
small test problems, application to problems of practical interest will typically
be computationally infeasible. Therefore, a final open question is how objec-
tive set compression may be performed efficiently when approximate solutions
are acceptable. An example of an approximate dimension extraction algorithm
has been given in [Bucci et al., 2004], but more accurate and more efficient
algorithms would form valuable extensions of the work presented here.

References

[Bouton, 1902] Bouton, C. L. (1901-1902). Nim, a game with a complete mathe-
matical theory. The Annals of Mathematics, 2nd Ser., 3(1-4):35-39.

[Bucci and Pollack, 2003] Bucci, A. and Pollack, J. B. (2003). Focusing versus in-
transitivity: Geometrical aspects of coevolution. In Erick Canti-Paz et al., editor,
Genetic and Evolutionary Computation Conference - GECCO 2003, volume 2723
of Lecture Notes in Computer Science, pages 250-261. Springer.

[Bucci and Pollack, 2005] Bucci, A. and Pollack, J. B. (2005). On identifying global
optima in cooperative coevolution. In Hans-Georg Beyer et al., editor, GECCO
2005: Proceedings of the 2005 conference on Genetic and evolutionary computa-
tion, volume 1, pages 539-544, Washington DC, USA. ACM Press.

[Bucci et al., 2004] Bucci, A., Pollack, J. B., and De Jong, E. D. (2004). Automated
extraction of problem structure. In Kalyanmoy Deb et al., editor, Genetic and
Evolutionary Computation Conference — GECCO 2004, volume 3102 of Lecture
Notes in Computer Science, pages 501-512. Springer.

[De Jong and Bucci, 2006] De Jong, E. and Bucci, A. (2006). DECA: Dimension ex-
tracting coevolutionary algorithm. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO-06, pages 313-320.

[De Jong and Pollack, 2004] De Jong, E. D. and Pollack, J. B. (2004). Ideal evalu-
ation from coevolution. Evolutionary Computation, 12(2):159-192.

[Deb and Saxena, 2006] Deb, K. and Saxena, D. K. (2006). Searching for pareto-
optimal solutions through dimensionality reduction for certain large-dimensional
multi-objective optimization problems. In Proceedings of the 2006 IEEE Congress
on Evolutionary Computation, pages 3353-3360. IEEE Press.

[Ficici and Pollack, 2001] Ficici, S. G. and Pollack, J. B. (2001). Pareto optimality
in coevolutionary learning. In Kelemen, J. and Sosik, P., editors, Sizth European
Conference on Artificial Life (ECAL 2001), pages 316-325. Springer.

[Goldman and Kearns, 1995] Goldman, S. A. and Kearns, M. J. (1995). On the
complexity of teaching. Journal of Computer and System Sciences, 50(1):20-31.
[Grundy, 1939] Grundy, P. M. (1939). Mathematics and games. Fureka, 2:6-8.

Reprinted in Eureka 27 (1964) 9-11.

Objective Set Compression 21

[Hillis, 1990] Hillis, D. W. (1990). Co-evolving Parasites Improve Simulated Evolu-
tion in an Optimization Procedure. Physica D, 42:228-234.

[Knowles et al., 2001] Knowles, J. D., Watson, R. A., and Corne, D. W. (2001).
Reducing Local Optima in Single-Objective Problems by Multi-objectivization.
In Zitzler, E., Deb, K., Thiele, L., Coello, C. C., and Corne, D., editors, First
International Conference on Ewvolutionary Multi-Criterion Optimization, volume
1993 of LNCS, pages 268-282. Springer, Berlin.

[Noble and Watson, 2001] Noble, J. and Watson, R. A. (2001). Pareto Coevolution:
Using Performance Against Coevolved Opponents in a Game as Dimensions for
Pareto Selection. In L. Spector et al., editor, Proceedings of the Genetic and Evo-
lutionary Computation Conference, GECCO-2001, pages 493-500, San Francisco,
CA. Morgan Kaufmann Publishers.

[Potter and Jong, 2000] Potter, M. A. and Jong, K. A. D. (2000). Cooperative
coevolution: An architecture for evolving coadapted subcomponents. Evolutionary
Computation, 8(1):1-29.

[Saxena and Deb, 2007] Saxena, D. K. and Deb, K. (2007). Non-linear dimensional-
ity reduction procedures for certain large-dimensional multi-objective optimization
problems: Employing correntropy and a novel maximum variance unfolding. In
Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., and Murata, T., editors, Proceed-
ings of the 4th International Conference on Ewvolutionary Multi-Criterion Opti-
mization, volume 4403 of Lecture Notes in Computer Science, pages 772—787.

[Singmaster, 1996] Singmaster, D. (1996). Chronology of recreational mathematics.
http://anduin.eldar.org/ problemi/singmast/recchron.html.

[Sprague, 1936] Sprague, R. P. (1935-1936). Uber mathematische kampfspiele.
Té6hoku Mathematical Journal, 41:438-444.

[Watson and Pollack, 2001] Watson, R. and Pollack, J. B. (2001). Coevolutionary
dynamics in a minimal substrate. In L. Spector et al., editor, Proceedings of the
Genetic and Evolutionary Computation Conference, GECCQO-2001, San Francisco,
CA. Morgan Kaufmann Publishers.

