Decision Region Connectivity Analysis: A method
for analyzing high-dimensional classifiers

Ofer Melnik
Volen Center, Brandeis University, Waltham, MA
melnik@brandeis. edu

August 2000

Abstract

In this paper we present a method to extract qualitative information from
any classification model that uses decision regions to generalize (e.g., feed-
forward neural nets, SVMs, etc). The method’s complexity is independent
of the dimensionality of the input data or model, making it computationally
feasible for the analysis of even very high-dimensional models. The qualitative
information extracted by the method can be directly used to analyze the
classification strategies employed by a model, and also to compare strategies
across different model types.

1 Introduction

It is typically difficult to understand what a high-dimensional classifier is doing. The
most common form of analysis usually consists of examining raw performance scores.
However, as simple one-dimensional measures, they do not lend much insight as to
what a model’s advantages and shortcomings may be. This problem is exacerbated
when we want to compare across different methods that solve the same problem,
for instance, across a bank of different neural networks, different graphical model’s,
or different SVMs, etc.

A model is usually trained or constructed by being given sample input/output
pairings that demonstrate its desired function, from which the model is expected to
generalize to the rest of the input space. Thus, the way that a model can form sets
in the input space (with an infinite number of points) from a finite training sample
is intrinsically tied in to how it can generalize. Many of the models used today
for classification such as Feed-Forward Neural Networks, Support Vector Machines,
Nearest Neighbor classifiers, Decision Trees and many Bayesian Networks generate
classification sets that are mostly manifolds or manifolds with boundaries. Sets of
this sort exhibit strong locality properties. That is, most of the points in the set
have a neighborhood surrounding them such that all points in the neighborhood are
also part of the set. Thornton [18] demonstrated that many of the datasets in the
UCI machine learning repository [4] contain data points that exhibit neighborhood
properties, and as such are amenable to generalization by manifold type classifiers.

Given this common generalization method of classifiers, what differentiates be-
tween different classifiers is how they individually partition the training points into
decision regions. A classifier might only use separate convex decision regions to
classify (e.g. a linear discriminant classifier). Thus, sample points are separated
explicitly by completely segregating them from each other in separate decision re-
gions. However, most interesting classifiers use more complex decision regions to
organize the sample points. The points are organized into decision regions with

.

=

Figure 1: Examples of some of the variations possible in decision region structure.

concavity, thus creating a partitioning of the points without explicitly placing them
in disconnected decision regions. In a sense this partitioning allows a finer grain
of differentiation since points may be closely associated by being in a convex sub-
component of the decision region or be distantly associated through a “network” of
other convex subcomponents. Figure 1 illustrates some of the questions that we
may want to ask about the decision region structure of a classifier, and some of the
interpretations of this information:

1.

How many separate decision regions are used (figure 1a): On the one hand,
too many decision regions might imply that the classifier had a hard time
fitting the data to decision regions, and would lead to bad generalization. But
some separate decision regions may indicate that the data points themselves
come from multiple subclasses.

How many and which sample points were used to decide the structure of
each decision region (figure 1b): Generally, more points throughout a deci-
sion region raises our confidence that it actually encapsulates the data. But
sometimes having one big decision region may also imply that the data used
to construct the classifier is too sparse.

The geometry and topology of each decision region (figure 1c): A decision
region may be convex (the left one), such that if we take any group of points
inside the decision region, the area between them is also inside the decision
region. Such a decision region describes a kind of uniformity, an extended
neighborhood in the input space where all points inside belong to one class.
In contrast, a decision region might be concave (the right one), where locations
between points from the decision regions may not belong to it, implying some
substructure between the components of the decision region.

The geometry of convex subcomponents (figure 1d): A concave decision re-
gion can be decomposed into convex subcomponents, like the one in the figure
which can be decomposed into at least three convex subcomponents. The pur-
pose of this is twofold: First, the decomposition allows us a glimpse into the
structure of the decision region, how it separates its different constituent por-
tions and their interrelationships. Second, being convex, the subcomponents
can be analyzed using common tools to understand their geometry. Thus, de-
composition is an important step in the analysis of the larger concave decision
region.

Connection strength of convex subcomponents (figure le): The degree that
the convex subcomponents are attached together in a concave decision region

is indicative of how separated they are. Concavity might be almost negligible
between two strongly attached convex subcomponents (left and middle), or
the concavity might act almost like a complete wall between two very weakly
connected subcomponents (middle and right).

Our aim is to analyze the decision regions of classifiers. We would like a means
to extract a classifier’s different decision regions and be able to decompose them
individually. To do this in an exact manner would seem to be ideal. Unfortunately,
in doing so we run into two related problems, the problem of dimensionality and
the problem of complexity. Initially, dimensionality appears to be our bane in the
form of visualization difficulties. We can not directly visualize a decision region
of more than three dimensions. However, assuming we can overcome that hurdle,
dimensionality also influences the complexity of the models. For example, a neural
network can have a number of decision regions that is exponential in the input di-
mension, where the complexity of the individual decision regions is also exponential
with respect to the input dimension [11].

In this context, it seems like an almost futile endeavor. However, there is an
intrinsic discrepancy between the potential complexity of the model, the complexity
of the data and the relevant complexity of a trained model. In figure 1f we see an
example of this. The model could be representing some highly complex decision
regions. However, the actual data points only reside in a simple part of the of
decision regions. And with respect to these data points, the model is basically
enclosing them in two pseudo-decision regions, one convex and one slightly concave.
Not only is the additional complexity of the model an artifact, but if a model is
successful at generalizing it must have found some underlying redundancy in the
data, therefore in some respect its relevant complexity is even less than that of the
data.

Our analysis method tries to extract this relevant complexity, by elucidating
the properties of the decision regions in the vicinity of the data points. This is
not done by examining the decision regions directly, but rather by examining the
effects that the decision regions have on the relationships between the data points,
and encapsulating this information in a mathematical graph, a dimensionless form
that allows us to make out the properties of the decision regions. This examination
of the relationships between the points instead of the general decision regions not
only allows us to extract only the relevant complexity, but also makes the analysis
method practically independent of the model type and dimensionality of the input
space.

The rest of the paper is organized as follows: We first introduce the core analysis
method, a method that extracts the structure of decision regions by representing
the relationships of the internal points using graphs. Following, we give a relatively
simple example of its application to a neural network that classifies points in a
three-dimensional space. The fact that it is three-dimensional allows us to visually
compare the structure described by the graph with the actual network decision
regions. In the section after, we refine the graph analysis method, and explain the
method by which we decompose the graph into the subgraphs which correspond
to decision region subcomponents. We then continue with an example where we
analyze two different types of classifiers, both applied to a high-dimensional letter
recognition problem. Using the graph analysis method allows us to clearly show
differences in the classification strategies of the two classifiers, and show where one
of them will generalize incorrectly. The section after that contains a discussion
about the analysis of convex subcomponents, leading to an in depth example of this
on an SVM model applied to a dataset from the Statlog project[9]. We conclude
with a detailed discussion of the method and some of its caveats and then discuss
how the method can be extended, suggesting possible avenues of new research.

Figure 2: a) The connectivity graph is generated by sampling between the sample
points. In this case we see how sampling between points A and B detects a boundary,
but points A and C share a neighborhood. b) A connectivity graph for two decision
regions, one convex and one concave superimposed over the actual decision regions.

2 Low Level Analysis

The fundamental way that manifold type classifiers create decision regions is by
enclosing points together in common neighborhoods, which is what our analysis
method tries to detect. As input we are given two things, the classifier we wish
to analyze and relevant labeled sample points, possibly the training data. It is
important that the sample points embody the part of the input space that is of
interest, otherwise we would be analyzing the classifier’s artifacts and not the rel-
evant regions. From now on, when we refer to decision regions we will mean only
the relevant portions of the decision regions (Note that this relevant area can be
extended almost arbitrarily if needed.)

Figure 2a graphically illustrates how the analysis method works. We take all
pairs of points with the same classification label (in this case points A,B and C).
Between each pair we extend a line segment in the input space. We then sample
along this line using the classifier. In other words, we find a series of points in the
input space along the line and apply the classifier to them. What we look for is a
break in the connectivity, a change in the classification label in one or more of the
points. Such a change implies that between the two points there is a decision region
boundary, and the two points do not share a common neighborhood. Algorithm 1
explicitly describes this operation. Note that if we take a constant number of
samples on the line between each pair of points then this algorithm’s complexity is
O(n?), where n is the number of points.

With this connectivity information we construct a graph in the mathematical
sense. In this graph each sample point is assigned a vertex, and the edges are the
actual connectivity information. That is, if two points are connected in the actual
input space with respect to the classifier then their vertices are connected in the
graph.

This connectivity graph can tell us three basic pieces of information: What points
reside in separate decision regions, if points are colocated in a convex decision region,
or if points reside in a concave decision region. Moreover, in the latter case we can
decompose this concave decision region and find what points reside in its different
convex subcomponents.

Figure 2b illustrates how the graph relates these three pieces of information:!

Tn the figure the graph is superimposed over the actual two-dimensional decision regions. Thus
the vertices of the graph correspond to the actual points in the input space. This is done only for

Algorithm 1 The Connectivity Algorithm generates the connectivity graph by
examining the connectivity between points in the decision regions.

X is the set of sample points.

G(V,E) is the undirected connectivity graph, where |V | = |X]|.

¢(z) is the classifier function, returns a 1 if z belongs to the class and other values
otherwise.

v(z) is a function that returns the vertex v € V corresponding to the sample
point x.

Y+ X
for allz € X do

Y+«Y\z
forally €Y do
delta « NprsAPLEST
set (v(z),v(y)) in E
fori=1... NUMSAMPLES do
if ¢(x + i - delta) # 1 then
clear (v(z),v(y)) in E
break
end if

end for

end for

end for

3

. If decision regions are disconnected then the graphs of the points they enclose

are also disconnected. In the figure we see this with respect to two decision re-
gions, whose internal points form two disconnected graphs in the connectivity
graph.

. When points are in a convex decision region then by definition they are fully

connected and as such form a clique in the graph. We see this convexity
property in the left decision region— it is convex and hence its graph is fully
connected.

. Cliques within the graphs of concave decision regions correspond to its convex

subcomponents. The right decision region is not convex and so its graph is not
fully connected. However cliques within its graph represent convex subregions
of this concave decision region. In this example decision region there are
three cliques, representing a decomposition into three convex subcomponents
(shown with dashed lines.)

Analyzing a three-dimensional neural network

A 15 hidden-unit threshold neural network was trained to predict whether a thrown
ball will hit a target. As input, it received the throwing angle, initial velocity and
the target distance (figure 3), Having only three inputs makes it possible to visu-
alize its decision regions. After iterations of back-propagation and hill-climbing it
achieved an 87% success rate on the training data. This system can be easily solved
analytically, and the analytic decision region is shown in figure 4 contrasted with the
neural network decision region which was extracted using the DIBA algorithm [11].

visual convenience, essentially, we could have drawn these vertices anywhere.

v Initial Velocity 0-100

e

5 Meter Target 3 Angle 0-90 A
-

x Throwing Distance 0-100

Figure 3: The classification task of the ball throwing network is to predict whether
a ball thrown at a certain velocity and angle will hit a target at a given distance.

100 100
3] [}
2 o
g 50 5 50
£ %)
o a
0 0 100
100 100 0
< 50
50 50 =
100 O Velocity
Angle 00 Velocity Angle

Figure 4: The decision region of the ball throwing network contrasted with the
analytic decision region.

100
80
60
40

20

100

100
50

50

Figure 5: a) The points extracted from the labeling in the connectivity graph su-
perimposed in their correct position within the decision region. b) The connectivity
graph of the decision region in figure 4 with respect to 78 internal points. The
vertices are labeled by association to four different clique like clusters.

Magnitude of Eigenvalues

All points

7, 22277

72

7

77
/4.

1 2 3

Figure 6: The eigenvalues of the PCA analysis for each of the groups contrasted
with the eigenvalues of all the points taken together. The decomposition into groups
allows us to realize that the points in the decision region form a two-dimensional
embedding in the space, which would not have been discernible by just performing
a PCA on all the points together.

Using the first 78 of the positive training points, a connectivity graph was gen-
erated for the hit class, as seen in figure 5b. The graph was drawn using a spring-
gravity type algorithm [6], where the edges are modeled as springs in a physical
model. This drawing algorithm has the property of making highly interconnected
vertices cluster together, allowing us to recognize cliques.

In the graph we can discern four different clusters that practically form cliques.
Assigning a label to the vertices based on which cluster they belong to (if they
belong to any cluster), we can plot the position of the actual points in the decision
region corresponding to the labeled vertices (figure 5a, compare with figure 4). In
this figure we can literally see that the points that make up each of these clusters
correspond to four different “slabs” or conspicuous convex subregions that make
up the actual neural network concave decision region. In addition, notice how
the connections between the clusters in the graph correspond to the relationships
between the subregions. That is, how the slab containing the C points touches the
slab containing the B points which in turn touches the A slab which touches the D
slab, all properties evident in the connectivity graph.

Since we have separated the points into convex subregions we can also analyze
their geometric properties. For example, by performing principal component analy-
sis [3] (PCA) on each of these clusters of points, we can discern their dimensionality
and also their orientation. Figure 6 shows the three eigenvalues for each of the clus-
ters as well as for all the points combined. The eigenvalues of the clusters all have
a practically negligible third eigenvalue. This indicates that they all form part of a
decision region which takes up little volume in the input space, rather it is almost a
two-dimensional embedding in a three-dimensional space. In contrast, this is not a
property we could have discerned by just performing a PCA of all the points, since
the eigenvalues of all the points together show a sizeable magnitude in all three
dimensions (as seen in the figure).

4 Higher Level Graph Analysis

The connectivity graph contains the topological information about how the sample
points are partitioned into decision regions. With relatively small graphs it may be
possible to visually discern the different components of the graph. But with larger

(@) (b)

(€) (d)

Figure 7: The same concave region can be partitioned into convex subregions in
different ways: a) maximum subregion size b) minimum number of subregions.
c+d) partitionings that reflect on the original region by allowing its reconstruction
by combining subregions.

or more complex graphs we need a method to decompose the graph into convex
subcomponents.

There is no single way to decompose a concave shape into convex subregions.
Figure 7 shows some examples of how a concave region can be decomposed. Example
a shows a decomposition that starts with the largest possible convex subregion, and
then incrementally finds the largest subregions in the remaining uncovered areas.
From the perspective of the graph (assuming some relationship between number
of points and the size of the region) this may be approximated by incrementally
locating the largest clique in the uncovered areas of the graph (max clique problem
[5]). Example b demonstrates a decomposition into the smallest number of convex
subregions. In terms of the graph this corresponds to a minimal clique partitioning
[12].

While both of these decomposition approaches satisfy different optimality con-
straints with respect to the form or quantity of convex subregions that they partition
the original region into, they do not address our primary goal, understanding the
structure of the original region. That is, running these methods may confer the
knowledge that the region is decomposable into a particular group of subregions,
but these partitionings do not lead to an understanding of how these subregions
combine together to form the original region.

Contrast this with the decomposition in examples ¢ and d. These decomposi-
tions have the property that if two subregions are touching then they (and possibly
their neighbors) can be combined to form a larger convex subregion. The effect of
this property is that it engenders a form of blueprint for the original region from
the adjacency relationships of the convex subregions. With the adjacency infor-
mation we can deduce how the subregions go together to form the original region,
illustrating the structure of the concavity and showing how the original region is

A B C

-
] GEiE
o -

Figure 8: A decomposition that allows reconstruction of the original region can be
performed by locating maximal convex subregions from different parts of the region
and then superimposing them to form the partition boundaries.

L/

the product of different overlapping convex subregions.

Figure 8 shows how this kind of decomposition can be generated. We start with
one location in the region and find the largest convex subregion that contains that
location. We do this repeatedly, at least until the original region is covered by these
convex subregions. Then we superimpose the subregions, using their borders to
further partition the subregions. The previously stated property is maintained by
only partitioning already convex subregions, guaranteeing that the new adjacent
subregions can be combined to form larger convex regions.

The partitioning in figure 8 was built from the convex regions A,B and C, forming
the smaller convex subregions D through H. One way to think of the partitioning
is as a set operation, the intersections and subtractions of the larger convex regions
(sets). Thus, we can visualize the partitioning as a kind of Venn diagram, showing
all the distinctive subsets that can be formed by these set operations. In this
particular example we can write D = A\ B, E = (B\A)\C, F = ANB,
G =BnNC,and H = C'\ B. This set theory analogy of the decomposition leads to
an interesting observation, each subregion belongs to a unique combination of larger
convex regions. Since each subregion is the result of a different application of set
operators, no two subregions belong to the same group of larger convex subregions,
as evidenced by the following relations.

DcA DcB DcC
EcCA EcB EcC
FCA FcB FcC
GCA GcB GcC
HCA HCB HcC

As just stated, the decomposition is described as a top-down process, start with
the complete shape, do an initial partitioning, and gradually refine that partition
to a desired level. However, we may also look at the partitioning from a bottom-
up perspective. Noting the set properties, it is possible to think of this type of
decomposition as a grouping of points from the original region that belong to a
unique combination of larger convex regions. In this way, all the points with the
same signature combination are grouped together to form one of the subregions.
The advantage of this perspective is that it acts to define how we should go about
analyzing the connectivity graph, by telling us how to group together vertices that
belong to the same subregions.

Vertices belong to the same subregion if they belong to the same signature
combination of larger convex regions. In terms of the graph, belonging to a convex

Group B

[}
A c GroupA Group C

a b c

Figure 9: a) A concave decision region housing nine points in different convex
subcomponents. b) The connectivity graph for the points in the decision region. c)
The group graph associated with the labeling of the connectivity graph.

region implies that the vertex is connected to all the other vertices in that region.
Thus, if two vertices belong to the same convex regions then by definition they
should be connected to the same vertices. And, by the same token, if those same
two vertices do not belong to the same convex regions then by definition they should
be disconnected from the same vertices. As such, the vertices that make up a
subregion all have the same (or similar) connectivity signature pattern. The higher-
level analysis approach uses the connectivity signature of vertices to decompose the
connectivity graph in a way that allows us to understand the underlying structure
of the concave regions represented by the connectivity graph.

This higher-level analysis method extracts two pieces of information from the
connectivity graph: First, which points are colocated in the same convex subregions.
Second, using the adjacency information, how do the convex subregions combine
to form the original decision region. The basic assumption of the method is that
multiple points inhabit the convex subregions of the decision region. This is a
fair assumption if we expect the classifier to have generalization properties, since a
manifold type classifier can only generalize by recognizing neighborhoods of points
to enclose together.

In the first stage of the method we seek to group sample points with similar
connectivity signatures, to group vertices that are mostly connected to the same
vertices and disconnected from the same vertices. This is done as follows: Consider
the connectivity matrix associated with the graph, where each row enumerates the
edges of a vertex in the form of a binary vector. The basic grouping operation is
simply: If the hamming distance between two such vectors is sufficiently small then
we group their respective vertices together. Allowing the distance to fall within a
threshold, rather than mandating an exact match, serves to both give a robustness
to the algorithm, allowing imperfections in the convex subregions, and acts as a
granularity control for subregion generation. These elements of the algorithm are
further discussed in section 7.

To see how this grouping operation works, consider the concave decision region
in figure 9a and its respective connectivity graph in figure 9b. Notice how the
points in the bottom left part of the decision region are all connected to each other
by belonging to the same convex subcomponent, in addition notice that they are
also all connected to the points in the top portion of the decision region, but not
to any of the points in the bottom right portion of the decision region. Thus, all
these points exhibit a distinctive connectivity signature which is distinct from the
other convex subcomponents of this decision region. In contrast, for example, the
points in the top portion of the decision region are connected to all the other points,
where as the points in the bottom right portion are connected to all but the points
in the bottom left. Thus, if we label the vertices based on similar connectivity,

10

then we end up with three groups of points as illustrated. Each group represents a
convex subregion, as each group’s vertices forms a clique. However, these groups are
differentiated with respect to their position in the decision region, which is divined
by their intergroup connectivity.

Algorithm 2 shows the grouping procedure. If we discount the computational
cost of calculating the Hamming distance (which on some platforms is almost an
atomic operation) then the complexity of this algorithm ranges from O(n?) in the
worst case to O(n) depending on the density of the groups.

Algorithm 2 The Grouping Algorithm groups together vertices with a similar
connectivity signature.

G(V,E) is the connectivity graph.

a is the percentage Hamming similarity.

B is the minimum group size.

M«V
while |M| > 0 do
arbitrarily pick i € M
assign new group label to i
M« M\
for all unlabeled j € V do
if |V|7Hammin“gDistance(i,j) > o then

assign group label of i to j
M+ M\j
end if
end for
if group size < 8 then
remove label for all group members
M + M U{group\ i}
end if

end while

function HammingDistance (vertex i, vertex j)
distance < 0
for all k € V do
if ((i,k) €e EN(J,k) ¢ E)V ((i,k) ¢ ENA(j,k) € E) then
distance < distance + 1
end if
end for
return distance

In the second stage of the analysis we wish to simplify the original connectivity
graph, in order to represent the adjacency relationships between the convex sub-
regions. This is done as follows: For each group, take all its vertices and merge
them, thus transforming the group into one labeled vertex with the same inter-
group connectivity as the group originally had. Doing so, we are left with a much
smaller and sparser group graph that relates the relationships between the groups—
their intergroup connectivity. In figure 9c we see this operation performed on the
connectivity graph in figure 9b. This new graph shows us that with respect to the
sample points, the original decision region partitioned the space into three groups
such that one of the groups (group B) is connected to both of the other groups,
but that the other two groups are not directly connected. Notice how the graph is

11

Figure 10: An example of two different concave decision regions and their respective
group graph.

similar in structure to the actual decision region.

Figure 10 illustrates the relationship between the group graph and two differ-
ent more complex concave decision regions. Cliques in the group graph represent
groups that may be combined to form larger convex subcomponents, possibly for
a geometrical or statistical analysis of the points in the subregion. In the trivial
case, every edge in the graph is a clique and represents a potential combined convex
region. Another group graph characteristic is loops of cliques. Loops of cliques in
the group graph represent the existence of holes in the decision region, as the con-
vex subregions that go around them must be connected together. The fundamental
characteristic of interest in the group graph is the branching structure. It relates
the actual partitioning between convex subregions, which subregions are directly
connected, which are distantly connected and their connection paths.

The next example applies the higher-level analysis method to compare between
two different types of high dimensional classifiers on the same task. By understand-
ing the different ways that these two classifiers partition the training data, we can
learn how they generalize differently.

5 Comparing two classifiers: A high-dimensional
example

The UCI repository [4] contains a dataset contributed by Alpaydin and Kaynak [1]
of handwritten digits. The original dataset contains 32 by 32 pixelated images,
normalized for scale and position. There is also a preprocessed version of the dataset,
where the 32 by 32 images are shrunk to 8 by 8 by counting the number of pixels
in each 4 by 4 region of the original image. This training set contains 3823 samples
from 30 people.

Using the preprocessed dataset the following classification task was constructed.
The data corresponding to the numerals 3 and 4 were assigned to one class, while
the remaining numerals were assigned to a second class. Thus the task consisted of
classifying a 64-dimensional input into two classes.

Two classifiers were used, a sigmoidal feed-forward neural network with one hid-

12

Figure 11: The connectivity graph of a 64-input neural network trained to classify
the numerals 3 and 4 as one class and the other numerals as another class. The
graph clearly illustrates that the network constructed a decision region with two
separate subclasses.

den layer of 7 units and a K-nearest neighbor classifier with K set to 9 [3]. The
network was trained using conjugate gradient [3] until it reached perfect classifica-
tion on the test data.

In order to make the connectivity graph more presentable, only the first 63
cases of the 3-4 class were used to draw it. In the additional levels of analysis 300
exemplars were used.

Figure 11 shows the connectivity graph for the neural network. Since the graph
is connected it consists of one decision region. However, it is apparent that this
graph is illustrating a concave decision region because the graph consists of two
highly connected regions with only very sparse connectivity between them. The
points were labeled using the labeling method described before at a 90% Hamming
similarity, which labeled the points as expected into two classes corresponding to
these (practically) clique subregions. In the connectivity graph the clusters are
almost completely disconnected, therefore we do not need to draw a group graph,
since a group graph is only constructed when the groups make up parts of larger
convex subregions.

When we examine the actual numeral associated with the labeled points we
realize that the points associated with the first label all correspond to the threes,
and all the points with the second label correspond to the fours. What this means is
that the network discovered that the 3-4 class really consists of two subclasses and
divided its decision region to clearly separate between them. Suppose that we did
not know that the class was decomposable and wanted to know the composition of
the subregions that the neural network generated. As before, since the subregions
are convex we can analyze them using PCA. In figure 12, for each group, we took
the mean of the points, in the top half we added the first 20 eigenvectors of the
PCA normalized by their standard deviation, and in the bottom half we subtracted
the same values. This gives a coarse approximation of the decision region’s scope,
the part of the input space that in encapsulated by the region. As can be seen, the

13

4

Group A

R S - -

Figure 12: For the two labeled sets in the connectivity graph in figure 11 a PCA
analysis was done to estimate the extent of the convex subregions, and two extreme
values are shown. As seen, group A contains threes, and group B contains fours.

left images correspond to threes and the right to fours, so we can literally see that
the two subregions correspond to two logically separate subclasses, without looking
up the original classes of the points.

Figure 13 shows the connectivity graph for the K-Nearest Neighbor classifier.
Again, it is a connected graph and hence has one decision region. This graph doesn’t
lend itself to a simple visual analysis, since it is more dense. However, when we
apply the labeling method at 80% Hamming similarity we get three labeled classes
as illustrated. The group graph analysis of the three labeled sets shows that the
vertices in group C are connected to both group A and B, but that there are hardly
any connections between groups A and B directly. Therefore the group graph is of
the form we saw in the example in figure 9. In figure 14 we present the results of
applying PCA analysis (as before) on the three different groups as well as on the two
cliques of the group graph. The figure shows that group A corresponds to threes,
and groups B and C correspond to fours. Since B+C and A+C form cliques in the
group graph, they form larger convex regions. The PCA analysis of the composition
of B and C corresponds (as expected) to fours, but the images of the composition
of groups A and C are not interpretable. This lack of interpretability goes with
what we know about how the data is structured, a convex subregion, such as this
one, consisting of both threes and fours would have to contain spurious data, data
which is neither a three or four, and thus lead to a malformed classification set.
When we examine the actual numerals associated with the labeled points, we see
that the A-labeled points do correspond to threes, and the B and C labeled points
do correspond to fours.

Both of the classifiers realized that the points making up the 3-4 class are not
homogeneous. This is demonstrated by the fact that both classifiers used a concave
decision region to house the points of the class. However the discrepancy between
them lies in how clearly they realized what the two subclasses are. The neural
network made a very clean distinction, clearly dividing the space between the threes
and fours. Whereas the K-Nearest neighbor classifier divided some of the threes
completely from some of the fours (groups A and B). However, it did not differentiate
between the threes in group A and the fours in group C, hence we would expect
potential misclassification in that region of the input space.

14

Figure 13: The connectivity graph of a K-nearest neighbor classifier set to classify
the numerals 3 and 4 as one class and the other numerals as another class. The
labeling of the graph suggests a weaker concavity than the neural network’s decision
region.

2 4 6 8 2 4 6 8

Group A Group B Group C Groups A+C Groups B+C

Figure 14: A PCA analysis was done to estimate the extent of the convex subregions
of the KNN connectivity graph. Two extreme values are shown for each region
analyzed. The subregion containing groups A and C is suspicious.

15

6 Learning from lower dimensions: A high-dimensional
example

6.1 PCA on Ellipsoids

Due to specific properties of the previous two examples (low dimensionality and
visual interpretation of the input space) we could perform a visual interpretation
for the PCA results of the convex subcomponents. For many applications a visual
interpretation is not possible. However, PCA results can still be numerically inter-
preted to gain an understanding of the strategies employed in different parts of the
input space by a classifier. The next example is one which requires such a numerical
interpretation, as its variables are not readily visually interpreted. Using PCA we
will see how the classifier treats the variables differently across the subcomponents
of its decision region. But before we proceed we need to reexamine how we perform
PCA on the points of the convex subcomponents.

In the previous two examples we performed a PCA on the points that make
up cliques in the standard way, using the covariance matrix. PCA is typically
performed on the covariance or correlation matrix of the data points making the
assumption that the points were sampled from an underlying distribution. The
assumption of a distribution attributes a significance to the density or measure of
the points. Thus, if the sample contained more points in a particular part of the
space the impact on the covariance matrix would be greater than points coming
from a sparser part of the space.

In our application there is no real meaning to the density of the points. Rather
than representing a sample from a distribution, the points define the shape and
extent of a convex part of a decision region. We know that all the points are inside
the convex region and that all the space between the points is also inside the convex
region. Therefore, looking at the density of the sample points would be deceiving
since the complete interior of the convex hull of these points is uniformly inside
the decision region. Instead, our interest lies with the geometric properties of the
convex hull defined by the points.

Tt is difficult to study the convex hull directly. As such, we aspire to approximate
the hull with a more regular shape, specifically an ellipsoid. Using an ellipsoid
to approximate data is a common approach both in statistics [13] and in other
domains [14]. This is in part due to the relationship proved by Lowner and John [10]
between the minimum volume enclosing ellipsoid of the hull and the maximum
volume enclosed ellipsoid. They proved that these two ellipsoids are concentric
and the same except for a constant shrink factor. Thus implying that the minimum
volume ellipsoid (MVE) would make a reasonable approximation to a convex region
by somehow capturing and bounding its geometry.

The advantage of using an ellipsoid to approximate the convex region is that it
allows us to continue using PCA to understand the shape of the region. Instead
of performing the PCA on the covariance matrix we apply it to the scatter matrix
of the ellipsoid, using the geometric interpretation of PCA [8]. Given an ellipsoid
described by the equation:

(z—p)SHz—p) =c

Where p is the center of the ellipsoid, ¥ ! is the scatter matrix and c is a constant
equal to the dimension of the space, then the principal components of ¥ correspond
to the directions of the principal axes of the ellipsoid, and the eigenvalues can be
used to calculate the half-lengths or radii of the axes.

In the next example we demonstrate how to use this method of performing PCA
on the MVE’s scatter matrix. There, we calculate the MVE using the algorithm

16

52 points 26 points

11 points 35 points

Figure 15: The group graph of the six input SVM model classifying the van class
from the vehicle dataset.

proposed by Titterington [19], a relatively fast iterative algorithm. Note that this is
an area of active research and there are other algorithms to compute the MVE [15].

In this example we will also show another advantage of using ellipsoids. By en-
closing points in ellipsoids in the analysis we indirectly build an alternative classifier
with the same group structure as the one we are studying. On the one hand, this
ellipsoid classifier allows us to verify our analysis. But, as we will see, it also allows
us to transfer decision region structure across different input dimensions.

6.2 The task and classifier

The vehicle database [16] used in the Statlog project [9] describes the silhouettes of
four different types of vehicles: an Opel, a Saab, a van and a truck. Each entry in the
database contains 18 different geometrical and statistical measures of the respective
silhouette. There are 846 entries in the database, which after random shuffling,
were divided into a 550 entry training set and 296 entry test set. As stated before,
the previous two examples had a visual component to their PCA /convex analysis.
In this dataset we do not have that luxury, which is one reason it was chosen, to
demonstrate how the analysis can be done on raw numerical data.

Using the SVM-Light package [7] a degree 3 polynomial kernel SVM (61 support
vectors) was trained to recognize the van vehicle using only the first 6 of the 18
measures (normalized to the range [-1,1]). The reason we used a smaller number
of inputs was primarily to simplify the analysis, having fewer variables implies less
interdependencies between them. Using the first six inputs was an arbitrary choice.
Any subset which allowed the classifier to achieve sufficient accuracy on the task
could have been used. This particular classifier achieved 98.1% on the training data
and 93.9% on the test set.

Using the training data a connectivity analysis was conducted rendering the
group graph in figure 15. As can be seen, the classifier consists of one concave
decision region with 4 connected convex subregions, A, B, C and D. The connectivity
between these regions means that A and B form a larger convex subregion, so do
B and C, and C and D. So, for the sake of analysis, we can decompose the decision
region into 3 overlapping convex subregions.

Figure 16 contains the results of the ellipsoid PCA method applied to each of the
convex subregions. Note that the values in the tables are rounded. This is common
practice as PCA is robust to rounding with respect to interpretability [8]. Next, we
will interpret these tables in order to understand what geometric properties define
membership in the van class, for each of these different convex subregions of the
input space.

6.3 PCA Interpretation

Interpretation of PCA data is an art unto its own (see [8], for example, for a deeper
treatment.) To generalize for the sake of simplifying the process, the principal

17

1. Compactness
2. Circularity
3. Dist Circularity X . .
4. Radius Ratio -2 - . . . § ¥ Groups A + B Ellipsoid
5. Axis Aspect Ratio -3 - § Axis# 1 II I IV V VI ||Center
1. Compactness 3 -1 6 -7 [0 -1 2
2. Circularity 8 0 3 5 [0 -1 2
3. Dist Circularity 5 0 -7 -4 1 -2 3
Groun B Ellipsoid 4. Radius Ratio 1 8 0 -2 -4 5|1
Axis# 1 1o m v Vv VI||Center 5. Axis Aspect Ratio 2 6 .1 0 4 -6 -.6
1. Compactness 31-3 0 9 a1 ofl a 6. Max AspectRatio 0 0 0 0 8 6| -9
2. Circularity 8 0 6 -2 0 0 .0 9 7 4 4 1 1
3. Dist Circularity S5 -2 -8 -2 2 -1 2
4. Radius Ratio 3 7 -2 2 -4 4 -1 Groups B + C Ellipsoid
5. Axis Aspect Ratio o 7 o0 1 5 -5 -5 Axis# I 1 I IV V VI||Center
6. Max Aspect Ratio 0 0 .0 .0 7 7 -9 1. Compactness 4 -6 6 -4 2 0
|Radius 18 6 4 4 .1 0] 2. Circularity 7 6 -2 -5 [0 0
3. Dist Circularity 6 0 0 38 |2 2
Group C FEllipsoid 4. Radius Ratio 3 -5 -5 -1 =5 -2
Axis# 1 II TI IV V VI ||Center 5. Axis Aspect Ratio .0 -6 -2 |5 -5
1. Compactness 4 -5 5 -5 1 2 -4 6. Max Aspect Ratio 0 0 0 7 -.8
2. Circularity -5 -8 -2 1 0 .0 -2 6 4 L1
3. Dist Circularity 3 -1 4 8 1 .1 -1
4. Rac'hus Ratio) 6 -3 -4 0 -3 -6 -5 Grouns C + D Ellinsoid
5. Axis Aspect Rat.lo 4 -1 -6 0 3 6 -5 Axis# 1 1L I IV V Contor
6. Max Aspect Ratio 0 0 0 .0 9 -4 -.8 1. Compactness 1.5 1 -9 0 -5
Radius 6 3 2 2 1 .1 2. Circularity -1 3 -8 -3 3 -1
3. Dist Circularity 3 -2 -4 0 -9 -2
Group D Ellinseid 4. Radius Ratio 7 -1 0 0 2 -6
Axis# 1 1 T IV V. VI||Center 5. Axis Aspect Ratio .6 0 1 3 -6
1. Compactness 3 0 8 -4 2 0 -5 2 3 -4 -2 -7
2. Circularity -2 6 4 5 -4 0 -1 3 7 3 2
3. Dist Circularity -1 5 -2 0 8 .0 -2 - - -
4. Radius Ratio -4 2 -1 -5 -2 -7 -7
5. Axis Aspect Ratio =5 2 0 -5 -1 7 -7
6. Max Aspect Ratio 7 -5 3 3 3 0 -7
Radius J 4 3 2 2 .0

Figure 16: This figure shows the PCA analysis of each of the ellipsoids used to
approximate the convex regions of the SVM classifier. The hi-lighted values are
discussed in the text.

18

components are roughly divided into two sets: those with a relatively high eigenvalue
or radius, and those with a small eigenvalue or radius.

Those components with a large radius describe correlations in the data. That is,
the variables with a large magnitude in a principal component vector with a large
radius, are variables that move together: Either they move in the same direction
together (positive correlation) if they have the same sign, or they move in opposite
directions together (negative correlation) if they have opposite signs.

On the other hand, components with a small radius act as constraints, describing
relationships between the variables in the component vector which must be main-
tained in order to stay within the decision region. Constraints are probably more
important to understanding a classifier’s decision regions than are correlations, as
the constraints describe the sharp boundaries between belonging or not belonging
to the class.

How does a small radius principal component express a constraint? Since the
component represents a small axis of the underlying ellipsoid then it implies that
moving from the center in the direction of the axis vector will quickly take us out
of the ellipsoid. Hence the component points in the direction of the decision region
border. A complementary algebraic perspective is to consider that any point T in
the ellipsoid (taken from the ellipsoid’s center) can be expressed as Z using the
coordinate system given by the PCA vectors from the center of the ellipsoid. The
component z; of the coordinate corresponding to the i-th principal component p;
is calculated by the inner product T - p;, due to the orthonormality of the principal
components. To be inside the ellipsoid z; has to be smaller than the radius of p;.
But since the radius of p; is very small or almost negligible we get the approximate
equation T - p; = 0, a direct linear constraint on the values of Z.

6.4 The Analysis

We would like to analyze the larger convex subregions, AB, BC and CD. In our
analysis we are interested in answering two questions: 1) What part of the input
space does the ellipsoid address? 2) What unique identifier of belonging to the class,
or constraints on the data are imposed by the ellipsoid?

First consider the group consisting of C and D (figure 16). Starting with what
part of the input space is covered by the ellipsoid, we contrast the center of this
ellipsoid with the other two ellipsoids to find that it differs mostly from the other
two by having a low Compactness (COM) and a lower Radius Ratio (RR). Looking
at the COM values in the principal components factored by their radii, we find that
this low COM value is true for the full ellipsoid as it is limited in this ellipsoid to
stay below -0.2. We next try to find the properties of the points in the ellipsoid.
Examining the PCA, what is particularly interesting is the last PC, one which
expresses a constraint. In this PC all but the 4th and 5th elements, RR and Primary
Axis Aspect Ratio (PAAR), have an almost negligible value. Since the value of
these two significant variables is almost equal but of opposite sign, then we arrive
at the approximate constraint: RR — PAAR = 0 = RR = PAAR, a direct strong
limitation on class membership. The first PC, the one with the largest radius, also
demonstrates that this constraint is the source of greatest variance for the set. In
the first PC, the RR and PAAR elements have the most significant magnitude of
any other variable. Their magnitude is also very similar between them, implying
that they are correlated and move together across the full stretch of the large radius.
Thus the group CD limits membership in the van class to points with a relatively
low compactness, which are constrained to have an almost equal RR and PAAR.

The groups AB and BC share many common properties. First, their centers are
very similar, hovering near zero for the first 4 variables and having a low Maximum
Length Aspect Ratio (MLAR). In fact this low MLAR is a constraint for both of

19

these groups. Looking, for example, at the group BC (the same is true for AB),
whose last two PCs act as constraints, we can see that other than the MLAR the
variables in the two constraints are mirrors of each other, their magnitudes are
close but their signs are reversed. Thus, adding the two constraints together, the
other variables cancel out and we conclude that the MLAR is constrained to be
zero (relative to the center of the ellipsoid). Note that this is also borne out in
the larger radius PCs, where the magnitude of the MLAR is negligible. Another
point of similarity between these two groups is their first PC. This PC has a very
large radius, allowing for the Circularity (CIR) and Distance Circularity (DC) to
move together through almost their full value range, between -1 and 1. There is
also some correlation with COM across this major axis of the ellipsoid. This major
axis is obviously a contribution from the points in the B group which also has a
very similar first PC.

Given these 3 large similarities between AB and BC, what are the differences
that put them into two separate convex regions? While these differences are hidden
in the respective PCs of these groups, it is easier to examine their two unconnected
subcomponents, A and C. The centers of A and C convey that these two groups
are from largely different regions of the input space. Where A is located to enclose
points with a high COM, CIR, DC and relatively low PAAR, C encloses points
with a low COM, relatively low CIR and DC, and a relatively higher PAAR. Other
than that important difference, the constraints of these two groups are similar—
both constraining the MLAR to zero, with a few small variations. The fact that
their kernel is similar (the subspace defined by their constraints) implies that these
ellipsoids have a similar orientation in the input space. Nevertheless, we can still
discern an important difference between them by looking at their first PC. Where
as group A’s PC shows a positive correlation between COM and CIR, group C’s
PC shows a negative correlation. Thus, in the direction of maximal change, these
groups show an opposing relationship between these variables (as well as others).

In summary, using the PCA analysis on the scatter matrix of the ellipsoids we
saw that the CD ellipsoid primarily addresses data points with a low COM and
varying MLAR, by constraining membership in the class to points having similar
RR and PAAR values. We then saw that the AB and BC ellipsoids both allow their
CIR, DC and to some degree their COM to vary together a great deal under the
constraint that their MLAR stays constant. Their main differences stem from the
contributions of the A and C groups which tackle points in the opposite extremes of
COM, CIR and DC by imposing variations on the relationships of these variables.
Thus, we conclude from the analysis that the classifier’s construction of a concave
decision region facilitates imposing a different classification strategy on the different
parts of the input space.

6.5 The ellipsoids as a model

In our previous analysis we constructed ellipsoids to enclose the points belonging
to each of the composite groups in order to analyze them using PCA. In doing so
we have indirectly constructed an alternative classifier, the model which consists of
these ellipsoids. That is, we can take an unclassified point in the input space and
check whether it is on the inside of any of the ellipsoids, if so classify it as belonging
to the van class.

We now compare this model with the original SVM model. Where the SVM
model achieved 93.9% on the test set, the ellipsoid model achieved 91.2%. Of the
296 entries in the test set the output of the two models agreed on 254 entries, 85.8%.
The SVMs average positive output response was 5.64 and -10.8 for negative outputs.
For the points where the models disagreed the SVMs average positive output was
2.84 and the average negative output was -2.59. The fact that these responses are

20

closer to zero implies that these points of contention between the models are points
which are close to the SVM’s boundary. We would not expect the ellipsoids to be an
exact match to the SVM model, differences in the underlying forms of the decision
boundaries, and limited information about the exact nature of the SVM decision
boundary would preclude that. However, as an approximation the ellipsoid model
gives a reasonable match to the SVM, capturing a large part of the essence of its
classification strategy.

Another SVM was trained using the same kernel on the full 18 input classification
problem (56 support vectors). It achieved 97.6% accuracy on the test set. The
connectivity analysis of this classifier showed that its decision strategy with respect
to the training set consists of one large convex region. Thus, in the process of adding
input variables, some of the concave structure present in the lower dimensional
model was removed. There could be different reasons for this, but it is a fair
assumption that the “Curse of Dimensionality” [3], the fact that as we increase
the input dimensions the problem becomes exponentially less specified, is involved.
This allows for a structurally simpler model (one convex decision region as opposed
to a concave one composed of 4 parts) to fit the data, as the added dimensionality
loosens the restrictions on the shape of the decision regions.

Fitting a minimum volume ellipsoid to the data gave a classifier with 87.84%
accuracy on the test data. However, this model does not take into account any
margin information (where to put the boundary between the van and other classes.)
We took a simple, relatively naive approach to this, just expanding the model by
a factor. As such, the ellipsoid would remain with the same center and relative
axes proportions, but we would expand or shrink it appropriately. Rather than
using an absolute factor we calculated the factor that it would take to bring the
ellipsoid to just touch the nearest member of the other class outside the ellipsoid,
and normalized the factors to that value. Thus, a factor of 1 corresponds to just
touching the first member of the other class. Using the test set for validation the
ellipsoid was expanded by a factor of 2.4, giving an accuracy of 96.96% on the test
set, misclassifying only two examples more than the SVM.

Even though the 18 input SVM model did not display the same structure as its
lower dimensional counterpart, that structure can still be applied to the 18 input
problem. Consider the connectivity graph as a way to organize the data points. In
essence it defines which points go together in convex decision regions. Thus, we can
build the same ellipsoid model used in the 6 input case, in terms of which points to
place in which ellipsoid, but use the full 18 dimensions of the input for the MVE
construction. Doing so renders a model with 80.4% accuracy on the test set. Using
a factor of 1 to adjust the margins of all three ellipsoids gives a model with 97.97%
accuracy, and validating with respect to the test set (factor=1.15) gives a model
with 98.99% accuracy on the test set. That is an improvement from 2.4% error
for the SVM to 1% error. Even though it is hard to draw strong conclusions from
this result it does speak to an important issue in decision region based classifiers,
over-generalization. The model with one convex decision region can perform well
on the test data. However, ultimately the task of the classifier is to define the class
set, what it means to be a van. By using one convex region to enclose all the points,
the model allowed the class to be, at the very least, any point between the vans
represented in the training data. Thus, rather than finding what makes a van a van,
it found what makes a van not an Opel, Saab or truck. In a world with more than
four types of cars the model would most probably misclassify other inputs which fell
into its decision region. In the lower dimensional case, the training data was denser
(relative to the dimensionality of the input space) and forced greater constraints on
the shape of the decision regions. By using this additional structure in the higher
dimensional case we may be getting closer to what it means to be a van.

21

Figure 17: There is no absolute sampling frequency which will guarantee the detec-
tion of all decision boundaries. In this figure we see that the closer we come to the
corner the higher the sampling rate must be to detect the boundary.

7 Analysis Method Details and Discussion

7.1 Low-Level Analysis

In the low-level analysis stage the connectivity graph is constructed by sampling
between the sample points. There is only one parameter that may be varied at this
stage, the sampling rate on the line. Unlike DSP applications where assumptions
can be made about the data source allowing use of the Nyquist frequency to sample,
in our particular case there is no one correct frequency, as illustrated in figure 17.
In the figure we see that as our two sample points approach the decision boundary
at the corner, we will need a continuously increasing sampling rate to detect the
output transition. The consequence of losing that transition is that the two sample
points may seem connected when there is in fact a region between them with a
different output. Thus, we can never lose the fact that two points are connected,
only that there may be a hole between them. Increasing the sampling frequency
increases our sensitivity to smaller and smaller holes. From an applied perspective,
ultimately it comes to the question of how small a transition is important to detect.
Typically, the heuristic used is to try a few sampling frequencies until an increase
in the sampling rate does not significantly change the connectivity graph.

Another decision to be made is what points to use. In this article we have
used the points of the training set. However, there is no reason to be limited to
only those points. One can also use the points of the test set, validation set, and
unlabeled data. In addition it is possible to generate additional points to explore
the classifier’s response in under represented parts of the input space. For example,
if we were interested in the shape that the decision region has between two classes
(at the margin), we might generate new points by sampling between the two classes
to find points near the boundary to be used for the connectivity analysis.

7.2 Higher-Level Analysis

At the higher-level analysis stage we want to partition the unconnected subgraphs
of the connectivity graph into convex (or almost convex) subregions in order to
understand the concavity in the represented regions, as well as to extract the interior
points of extended convex subregions for further analysis. To this purpose the
algorithm described in section 4 allows us to partition the graph into a network
of interconnected subregions, based on the connectivity signature of points as it
reflects their membership in larger convex regions.

The main parameter influencing partitioning characteristics is «, which acts as
the cutoff value for the Hamming distance. Two vertices will be grouped together

22

Figure 18: A example of two regions where the granularity of their partitioning
influences how well their concavity is conveyed or the number of larger convex
regions detected.

if the percentage of their connectivity signatures that is identical is greater than
a. On the one hand this parameter confers a certain robustness, allowing vertices
with similar but not identical connectivity signatures to be grouped together, and
as such, to gloss over small noise or irregularities in the decision region structure.
But more importantly the o parameter guides the granularity of the partitioning,
how finely it captures the curvature of the concavity or how sensitive it is to possible
larger convex regions.

To understand the issues that granularity encompasses consider the concave
regions in figure 18. The left region is an example of a region that can not be
partitioned into a finite number of convex subregions, as any subregion that includes
a non-point part of the lower border would be concave. As seen in the figure,
in approximating a partitioning we effectively choose what degree of concavity is
acceptable for a subregion, thereby controlling the number of subregions used to
describe the region. In contrast, the right region in figure 18 can be partitioned
using a finite number of convex subregions. However, the lines inside the figure
illustrate that an infinite number of convex subregions are bounded within it. In
partitioning this figure we must choose our sensitivity to all these potential larger
convex regions. That is, we need to effectively decide how different two larger convex
regions need to be for us to distinguish between them in the partitioning.

By acting as a limit on how different two points can be and still belong to the
same group, the a parameter allows us to address these two granularity concerns.
Figure 19 shows the effect of varying a on the quality of the partitioning for these
two types of regions. These figures were made by first generating 200 random points
in the interior of the region, calculating the connectivity graph on the region’s raster
image, and then running the partitioning algorithm at different values of a. For
each group identified in the partitioning, the convex hull of the points was calculated
and plotted to illustrate the location of the identified subregion. It is apparent that
increasing the value of a increases the granularity of the partitioning, generating
more groups. Notice how, for the more refined partitioning, the groups can be
combined to form larger convex regions, easily supporting the construction of group
graphs. In addition, note how the lines of the subregions support the shape of the
larger regions. On the downside, with higher a values we run the risk of generating
an overly complex group graph and also may lose more points that do not fit into any
group directly. For intermediate values of a the region is partitioned into a smaller

23

60% similarity 70% similarity 80% similarity 90% similarity

70% similarity 80% similarity

95% similarity

B
Zy

Figure 19: Examples of how different settings of the a parameter (Hamming simi-
larity) influence the granularity of the partitioning.

number of groups, but the groups themselves and their combination may exceed
(hopefully slightly) the concave boundaries of the original region. With low « values,
while almost all the points are grouped into a small number of distinct groups, the
partitionings may not be refined enough to actually allow the construction of a
group graph as the intergroup connectivity may be ambiguous.

The algorithm does not explicitly state how to pick the initial point from which
to construct the group. In the previous examples this point was randomly selected
from the pool of unassigned points. A random selection approach is obviously
not deterministic, as multiple runs will generate different partitionings. When the
Hamming similarity is high, the effects of this are only marginal as the groups are
more distinctly defined. It is possible to employ a deterministic policy, for example
to always select the point with the smallest hamming distance to the existing groups,
or to pick points with a small or large number of connections. However, beyond
providing a deterministic outcome, there is no clear advantage to these approaches,
as the quality of a partitioning may improve or degrade with each of these depending
on the context. In that regard, it is advantageous to compare multiple partitionings
at the same a level, using the tools described next. In addition, the § parameter
helps eliminate hapless partitionings by imposing a minimum on the number of
elements in a group, if this is set high enough it avoids the formation of small
spurious groups.

As discussed, partitioning involves a human element to experiment with different
decomposition parameters and verify the qualities and integrity of the partitioning.
In this process, feedback to the user about the partitioning is provided by group
membership (e.g., number of points in a group) and the intergroup connectivity
matrix G. Let 4, be the labels of two groups, let S; be the set of vertices with label
i, and define n(l, S;) to be the number of connections that vertex | has with group
S;. Then the matrix G is constructed as (where the equalities are due to symmetry
of the connectivity matrix):

G = G = 2ies, (L, S5) _ 2ies; ™l Si)
o 1Sil |S;] 1Si] |S;]

What G describes is how connected any two groups are. Each entry is a value
between 0 and 1, where 1 implies that the two groups are 100% connected— all
points in ¢ are connected to all points in j and vice-versa. Typically most values
are not 0 or 1, but somewhere in between. Usually we apply a cutoff, for example,

24

@ (b)

Figure 20: The partitioning on the left was conducted with a 70% Hamming simi-
larity. The partitioning on the right is a refinement of group B into two subgroups
that have a clearer connectivity.

groups with over 85% connectivity are considered connected while groups with less
than 15% connectivity are considered disconnected.

The intergroup connectivity matrix can be used to evaluate a partitioning. It
relates which groups are connected and can be combined to form larger convex
regions (to form the group graph), which groups are not connected and which
groups have ambiguous connectivity. That is, their intergroup connectivity value is
somewhere between the cutoff values, not allowing us to explicitly state whether they
are connected or not. As seen before the reason for this is that during the grouping
procedure we may purposely seek large robust subregions by setting a relatively low
value for the a parameter. However, as a side effect it may allow groups to form
which consist of points that, at a coarse level, have a similar connectivity signature,
but with respect to a few groups may have different connectivity.

A solution to this is to perform a refined grouping. After identifying two groups
with ambiguous connectivity, we perform a second round of partitioning on the
members of one of the groups. However, when we check the Hamming distance
we do so only with respect to the members of the other group. What this does is
to split the original group with respect to how the vertices are connected to the
ambiguous second group. Typically, we may end up splitting the group up into two
groups based on whether or not they are connected to the ambiguous group. The
procedure may be repeated until we are left with an interpretable group connectivity
matrix G, allowing us to draw a group graph of the relationships between the groups.

For example, the region in figure 20a contains a partitioning with a 70% Ham-
ming similarity. Following is the rounded G matrix for this partitioning:

A B (C
A 10 01 05
B 01 1.0 0.5
Cc 05 05 10

25

Figure 21: The point at which the arrow is pointing has a unique connectivity
signature which would preclude including it in any group. However, it is part of the
convex region that includes the bottom 3 points.

From the matrix we see that while groups A and B are effectively not connected,
as seen from the figure, there is ambiguity with respect to how group C is connected
to A and B. We can additionally partition the points in group B with respect to
how they connect to group C. By applying a 50% Hamming similarity as a cutoff,
we split B into two groups, D and E, as seen in figure 20b. Following is the new G,
showing that the ambiguity was eliminated, but the connections between A,C and
E need to be further refined.

A D C E
1.0 00 0.5 0.3
0.0 1.0 01 1.0
05 01 1.0 1.0
03 1.0 1.0 1.0

QO

As described, the high-level analysis phase is inherently flexible. Depending on
the context and the user’s judgment, it allows for partitionings at different granu-
larities and levels of refinement. It may be enough to generate a decomposition that
captures the basic distinctive concavity of a region, or we may desire a decompo-
sition that identifies small differences between the convex subregions. Using these
tools, the user can make the choices most appropriate for their application.

7.3 Convex Region Analysis

In the convex analysis stage, we wish to locate which points go together in convex
regions, and to apply a convex analysis methodology to those points. During the
labeling of the various groups, some points that are part of convex regions may end
up not being labeled. We call these corner points. As figure 21 illustrates these
corner points are points that, due to their position in the decision region, may not
have a connectivity signature that is shared by other points. Thus, before we start
the convex analysis, we can go through each unlabeled point and check which groups
it is highly connected to. Then, when we do the actual convex analysis we include
those unlabeled points that are also highly connected to the group being analyzed.

In this paper we have used PCA on the covariance matrix of the data and PCA
on the scatter matrix of the MVE. There are other methodologies that may be
applied to analyze convex regions, for example convex regions may be approximated
by axis-parallel boxes [2] [20], allowing a “rule like” representation of the data.
Unfortunately, a detailed discussion of these and other methods are beyond the
scope of this manuscript.

26

8 Extending and Generalizing the Method

The Decision Region Connectivity Analysis method (DRCA) as described here is
applied to decision regions in the input space. At times we may want to interpret
the classifier as first applying a coordinate transformation to the data (feature
extraction, hidden unit space, kernel space, etc) and then enclosing the transformed
data in decision regions. In such a case we can apply the DRCA method in this
transformed space instead of the input space. For example, for a neural network we
may apply the method to the data points only as they are represented in the first
layer of hidden units, thus sampling along lines in the hidden-unit space instead of
the input space.

It is also interesting to note that the only location in the basic algorithm that we
make an assumption about the metric of the input space is in how we define what it
means to sample “on the line”. Thus, another possible modification to the algorithm
would be to adjust this definition to reflect prior knowledge about how either the
input space is organized or how the classifier interprets it. However, modifications
of this sort reflect changes in how neighborhoods are defined, and as such would
preclude the typical analysis of convex regions using PCA.

In general though, how do we extend this method to other types of classifiers? It
may seem that we want to mathematically abstract the cornerstones of the method,
introducing abstract notions of convexity and concavity. Singer [17], describes this
procedure as “One selects a certain property that usual convex sets in R™ have, but
many other objects in possibly other settings also have, and one uses that property
to define a ‘generalized’ sort of ‘convexity”™. Even though this sounds vague it hints
at the real question, why are we interested in convexity to begin with?

When a model is given training data, it is given a sampling of a category set,
and asked to deduce the actual complete set. So if a model has generalized from
training data then the class set it has constructed approximates the actual under-
lying category set. Thus the model builds a larger (probably infinite) set from a
finite sample. Whether the model will generalize successfully depends on whether
these larger sets are the right form of extrapolation from the sample. Our goal is
to understand the model’s class set, we want to describe these infinite sets that are
derived from the sample. In a decision region type classifier, points are enclosed in
contiguous volume filling areas of the input space. By examining where points are
fully enclosed in convex portions of decision regions, we can infer how the model
generalizes. These convex portions describe the unique, contiguous, volume filling
parts of the input space where all the points belong to the class. Thus, convex
regions are the essential mechanism by which these models construct infinite sets
from finite samples. In order to adapt this method to a different type of classifier
we would need to understand how it constructs infinite class sets from samples and
find a method to recognize and analyze the structure of these sets.

9 Conclusion

Many classifiers, such as feed-forward networks, nearest-neighbor classifiers, support
vector machines, decision trees and their ensembles, operate by constructing com-
plex decision regions in the input space. These decision regions can be few or many,
convex or concave, have large or small volumes, etc. By focusing on the sample
points enclosed in these regions we have demonstrated a method with low compu-
tational complexity, DRCA, to extract these properties which is independent of the
classifier type or the dimensionality of the input space. It thus allows us not only to
analyze individual high-dimensional classifiers but to compare completely different
classifier models on the same problems. We demonstrated this method on a number

27

of examples: Analyzing a 3-dimensional neural network, allowing a comparison of
the method with its actual decision region; Comparing a neural network and KNN
classifier on a handwritten digit classification problem, and demonstrating funda-
mental differences in their generalization strategy; Analyzing a high-dimensional
SVM model, and demonstrating how it partitioned its decision region to apply
different classification strategies to different parts of the input space. In addition
we have described how the approach may be used to transfer constraints across
dimensions, as well as discussing points of potential expansion for the approach.

This method offers a significant opportunity in helping to unite a field with many
models and approaches by giving an analysis tool which addresses their greatest
common denominator, their method of generalization. Thus it allows the qualitative
analysis of present and future high-dimensional classifiers, providing greater insight
into these models and the problems they are applied to.

10 Acknowledgments

Thanks to Jordan Pollack and the members of the DEMO lab for all their support
and assistance.

References

[1] E. Alpaydin and C. Kaynak. Cascading classifiers. Kybernetika, 34(4):369-374,
1998.

[2] S. Bespamyatnikh and M. Segal. Covering a set of points by two axis-parrallel
boxes. In Proc. 9th. Canad. Conf. Comput. Geom., pages 33-38, 1997.

[3] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

[4] C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

[5] I.M. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo. Handbook of Combi-
natorial Optimization (Supplement Volume A), chapter The maximum clique
problem. Kluwer Academic Publishers, Boston, MA, 1999.

[6] I. Bruss and A. Frick. Fast interactive 3-d graph visualization. In Proceedings
of Graph Drawing ’95, pages 99-110. Springer-Verlag, 1995.

[7] T. Joachims. Making large-scale svi learning practical. In B. Schelkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector
Learning. MIT Press, 1999.

[8] L.T. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986.

[9] R.D. King, C. Feng, and A. Shutherland. Statlog: comparison of classifica-
tion algorithms on large real-world problems. Applied Artificial Intelligence,
9(3):259-287, May/June 1995.

[10] L. Lovasz. An Algorithmic Theory of Numbers, Graphs and Convezity. Capital
City Press, Vermont, 1986.

[11] O. Melnik and J. Pollack. Exact representations from feed-forward networks.
Technical Report CS-99-205, Brandeis University, 1999.

[12] A. Paz and S. Moran. Non deterministic polynomial optimization problems
and their approximations. Theoretical Computer Science, 15(251-277), 1981.

28

[13] P.J. Rousseeuw. Handbook of Statistics, volume 15, chapter Introduction to
Positive-Breakdown Methods, pages 101-121. Elsevier, Amsterdam, 1997.

[14] A. Sabharwal and L.C. Potter. Set estimation via ellipsoidal approximation. In
Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing, May 1995.

[15] N.Z. Shor and Berezovski. New algorithms for constructing optimal circum-
scribed and inscribed ellipsoids. Optimization Methods and Software, 1:283—
299, 1992.

[16] J.P. Siebert. Vehicle recognition using rule based methods. Technical report,
Turing Institute, March 1987.

[17] 1. Singer. Abstract Conver Analysis. Wiley-Interscience, 1997.

[18] C. Thornton. Separability is a learner’s best friend. In J.A. Bullinaria, D.W.
Glasspool, and G. Houghton, editors, Proceedings of the Fourth Neural Compu-
tation and Psychology Workshop: Connectionist Representations, pages 40—47.
Springer-Verlag, 1997.

[19] D.M. Titterington. Estimation of correlation coefficients by ellipsoidal timming.
Appl. Statist., 27(3):227-234, 1978.

[20] B. Zhu. Approximating the convex hull polyhedra with axis-parallel boxes.
International J. Comput. Geom. Appl., 7:253-267, 1997.

29

