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Abstract. Designing an adequate fitness function requires substantial knowl-
edge of a problem and of features that indicate progress towards a solu-
tion. Coevolution takes the human out of the loop by dynamically con-
structing the evaluation function based on interactions between evolving
individuals. A question is to what extent such automatic evaluation can

be adequate. We define the notion of an ideal evaluation function. It is
shown that coevolution can in principle achieve ideal evaluation. More-
over, progress towards ideal evaluation can be measured. This observa-
tion leads to an algorithm for coevolution. The algorithm makes stable
progress on several challenging abstract test problems.
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Designing an adequate fitness function requires substantial domain knowl-
edge and can be a critical factor in evolution, see e.g. [9]. Often though, tests re-
vealing information about the qualities of individuals can readily be performed.
In chess for example, absolute evaluation of strategies is extremely difficult,
while comparing individuals only requires knowledge of the rules of the game.
If individuals can be evaluated based on tests, coevolution can be used to cir-
cumvent the problem of defining a fitness function.

Coevolution has already produced a number of promising results [10,19,
12,17]. However, there are various ways in which evaluation in coevolution
can become inaccurate [21,2,16]. As a step towards accurate evaluation, Juillé
defines a domain-specific ideal trainer [11]. Rosin provides an automatic mech-
anism for accurate evaluation, but the approach is based on a single-objective
perspective, and likely to stall for problems with multiple underlying objec-
tives. Pareto-coevolution [6,20] uses the outcomes of a learner against coevolv-
ing evaluators (tests) as objectives in the sense of Evolutionary Multi-Objective
Optimization.

By combining Rosin’s complete set of tests with Ficici’s important notion
of distinctions [7], we arrive at the concept of a Complete Evaluation Set. The
complete evaluation set was first described in [3], and detects all differences
between learners relevant to selection.
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We prove that given a complete evaluation set as evaluators, Pareto-coevolution
leads to ideal evaluation, i.e. evaluation according to all underlying objectives of
a problem. Using order theory, Bucci has defined a set of maximally informative
evaluators [1]. While this set also makes all distinctions necessary for learner se-
lection, it is different, as the complete evaluation set is a maximally informative
set of evaluators. By virtue of this, the complete evaluation set has the property
that its required size is bounded and small.

The complete evaluation set provides a practical way for coevolution meth-
ods to approximate ideal evaluation. An algorithm based on this principle is
described, and found to achieve stable progress on a number of test problems
that could not be addressed by standard coevolution methods used for compar-
ison. This paper summarizes the results described in our technical report [3]. A
more extensive account of this work is to appear in [4].

1 Evaluation in Coevolution

We consider problems where multiple objectives may underly performance.
This includes as a special case single fitness value problems. The theoretical
ideal evaluation function specifies which individuals would be preferred over
which other individuals if the underlying objectives would be available. We
demonstrate that using the outcomes of interactions between coevolving indi-
viduals as objectives, it is possible to construct an evaluation function that is
precisely equivalent to the ideal evaluation function.

1.1 An Ideal Evaluation Function

The problem of evaluating individuals according to multiple objectives is stud-
ied in Evolutionary Multi-Objective Optimization (EMOO), see e.g. [8,5]. We
follow EMOO in using the Pareto-dominance relation to compare individuals:

Definition 1 (Pareto-dominance). An individual a dominates another individual
b with respect to a set of objectives O if:

d%m(a,b) <~ Vi:O0(a,i) > O(b,i) A Fi:O0(a,i) > O(b,1) 1)

where O(z, 1) returns the value of the i*® objective of v, 1 < i < n, and n is the number
of objectives contained in O.

To obtain an evaluation function Fiqeal that determines for any pair of individ-
uals a and b whether a is to be preferred over b, we can directly employ the
Pareto-dominance relation based on the (unknown) underlying objectives U:

Faeal(a,b) = d%m(a, b) )

U(z,i) = 2; 3)

In general, the solution to a multi-objective problem is a tradeoff front of in-
dividuals that achieve the different objectives to different degrees. If a single

optimum exists, as in problems with scalar fitness functions, this individual is
also the solution of the corresponding EMOO problem.



1.2 Coevolution: Interactions as a Basis for Evaluation

The difficulty of evaluation in coevolution is that selection does not have access
to the ideal evaluation function. Instead, selection decisions must be based on
the outcomes of interactions between individuals. We will demonstrate that
these interactions can provide sufficient information for ideal evaluation.

We distinguish between learners, and evaluators. Learners are to address the
problem at hand. The aim of the evaluators is to distinguish between learn-
ers. The set of all possible learners is denoted as IL, and the set of all possible
evaluators as IE. Particular sets of learners and evaluators are denoted as L and
E.

All interactions are assumed to be pairwise. An interaction is a function G :
LxE — O that accepts a learner and an evaluator. It returns an outcome for the
learner from some ordered set of values 0, e.g. real numbers or game outcomes.
An interaction G(a, e) may be thought of as a two-player game between a and
e, or as a test or test-case that e poses to a. The interaction between a and e
reveals some information about «’s underlying objectives, while it is unknown
what this information is, or what the underlying objectives are.

Clearly, in order for the interaction function G to be useful in evaluating
individuals, it must bear some relation to the underlying objectives that de-
termine the quality of individuals. Specifically, we require that any increase in
an underlying objective of an individual a must be reflected in an increased
outcome of its interaction with some player b. Conversely, the information con-
tained in G should not provide misleading information by indicating an im-
provement when there is none.

Formally, the interaction requirement specifies that for any pair of learners
a,be L

Jita; >b <= Jde€E:G(a,e) > G(be) 4)

Each learner is evaluated based on its outcomes against the current set of
evaluators. Following Pareto-coevolution [6,20], these outcomes are treated as
objectives. This results in the following evaluation function Feeey for learners:

Feoev = dom(a, b) (5)
OE

G

where a,b € L are learners, and the k™ objective of a learner L’ € L is the
outcome of its interaction G with the k*" evaluator E* € E:

OG(L', k) = G(L', E*) (6)

2 Principled Evaluation in Coevolution

An evaluator e € I distinguishes between two learners a,b € L if a’s outcome
against e is higher than b’s outcome:

dist(e,a,b) <= G(a,e) > G(b,e) (7)



We define a Complete Evaluation Set to be a set of evaluators E that make all
distinctions that can be made between the learners in L:

Definition 2 (Complete Evaluation Set). An evaluation set E C IE is complete
for an interaction function G and a set of learners L if and only if:

Va,be L: [Fe € E: G(a,e) > G(b,e) = e’ € E:G(a,e') > G(b,e")] (8)

We will write E; to denote an evaluation set that satisfies this property for a set
of learners L. The theoretical result of this paper is that the use of a complete
evaluation set Ej as objectives for a set of learners L renders the coevolutionary
evaluation function equivalent to the ideal evaluation function:

Theorem 1 (Equivalence with the ideal evaluation function). Let Fioev(a, b) =
doqu(a, b) be a coevolutionary evaluation function for L based on a complete evaluation
Ok

set E. Let Figeai(a,b) = d%m(a, b) be the ideal evaluation function for L, based on
the underlying objectives U. Furthermore, let G satisfy the interaction requirement for
U. Then for any pair of learners a,b € L : Feoev(a,b) = Figeal(a, ) -

A proof is given in appendix A. The finding implies that by treating the out-
comes of learners against evaluators as objectives, ideal evaluation can in prin-
ciple be achieved. Thus, it may be seen as a motivation for Pareto-Coevolution.

2.1 Approximating the Complete Evaluation Set

We now consider how algorithms may approximate the complete evaluation
set. This is surprisingly tractable, since the number of potential distinctions is
the square of the number of learners. Thus, we can treat all potential distinc-
tions between learners as objectives, resulting in a setup where evaluators strive
to find all possible distinctions between learners:

i o 1 if G(L',E*) >G(L7,E*
O ni-i+ ) = {O otherv(vise ) ( ) ©)
where O(E*, n) is the n'* objective of an evaluator E*¥ € E, L' is a learner,
n; = |L| is the number of learners and G({, ) is the interaction function accept-
ing a learner and an evaluator. A convenient representation of the objectives of
evaluators is as the entries in a square matrix, where the columns and rows rep-
resent the learners, and each entry represents a distinction between two learn-

ers, see figure 1 and eq. 7.

3 An Algorithm for Pareto-Coevolution

The above idea can be translated into an outline for algorithms by combining a
current population of learners and a set of offspring into a single set of learn-
ers. To obtain an evaluation set for this set of learners, we invoke a secondary
evolutionary process. This leads to an outline for algorithms, see figure 2.
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Fig. 1. Matrix representation of the possible distinctions that can be made between a set
of learners (example). A distinction between learners L' and L’ can be made (1) if an
evaluator E* exists such that the outcome of L; against E* exceeds that of L;.

Convergence to ideal evaluation can be guaranteed in the limit by generat-
ing every possible evaluator with non-zero probability, and collecting any eval-
uator making a new distinction; for n learners, this leads to a set of at most n?
evaluators. In practice, we iterate the inner loop for a single step only, so as to
balance the computational effort spent on evolving learners and evaluators.

Concerning learner selection, preliminary experiments led to the finding
that non-dominance is not strict enough as a selection criterion for learners and
can result in regress. Therefore, a learner may replace an existing individual
only if it dominates that individual. This simple technique is sufficient when a
global optimum exists. For an algorithm also striving towards a balanced dis-
tribution of individuals over the tradeoff front, see [14].

1. Lpop:=random_population()
2. Epop:=random_population()
3. while — performance-criterion
4. Lot := Lpop U generate(Lpop)
5. while — distinctions-criterion
6. FEiot := Epop U generate(Epop)
7. Vi, k : Gli, k] := G(L*, E¥)
8. Vk,i,j : dlk, i, 7] := (G[i, k] >Glj, k])
9. evaluate(Fot,d)
10. Epop := select (Eiot)
11. end
12. evaluate(Liot,G)
13. Lyop == select (Lot )
14. end

Fig. 2. Outline for coevolution algorithms that approximate the ideal evaluation func-
tion.



The strict selection consideration also applies to evaluator selection. In addi-
tion, diverse evaluators must be maintained, representing all underlying objec-
tives. Therefore, an evaluator will be replaced by its offspring only, and only if
this offspring dominates it. This is similar to the deterministic crowding method
for diversity maintenance, see [15]. We call such individuals Pareto-hillclimbers;
the PAES algorithm [13] is another example of a Pareto-hillclimber.

We have arrived at a setup where, given a population of learners L and a
population of evaluators £, new learners are evaluated based on the evaluators
in E and can replace any learner they dominate, while evaluators are Pareto-
hillclimbers that use the distinctions between the learners in L as their objec-
tives. This method will be called DELPHI, which stands for Dominance-based
Evaluation of Learners on Pareto-Hillclimbing Individuals.

4 Test Problems and Experimental Setup

We will now investigate the algorithm derived from the ideal evaluation prin-
ciple in experiments. The test problems employed are variants of the Numbers
Game [21]. Individuals are vectors of real valued variables. The underlying ob-
jectives for the problems correspond precisely to these variables. Hence, the
aim should be to maximize each of the individual’s variables. However, as we
aim to study coevolution, the selection mechanism may not use knowledge of
the underlying objectives, but is based on the outcomes of interactions between
individuals. The difficulty of the task is determined among other factors by the
information the interaction function G provides about the underlying objec-
tives of an individual.

The purpose of the test problems is to test to what extent coevolution al-
gorithms are able to provide accurate evaluation, i.e. evaluation according to
all underlying objectives. To this end, the problems should make accurate eval-
uation difficult. This is achieved by making it likely for evaluators to repre-
sent only a subset of the dimensions or objectives in the problem. When this
occurs, learners can only progress on a subset of the underlying objectives, a
phenomenon called over-specialization or focusing [21]. In this case the minimum
value of learners will not increase further. By using the minimum value of in-
dividuals as a performance measure, we can detect whether progress is being
made on all underlying objectives.

The first test-problem is called COMPARE-ON-ALL. In this problem, the learner
and the evaluator are compared based on all of the evaluator’s dimensions. The
outcome of the interaction function for this problem is positive (1) if and only
if the learner’s values are all at least as high as those of its evaluator:

1 if Viia; > e

—1 otherwise (10)

Gaula,e) = {
where a is a learner, e is an evaluator, and z; denotes the value of individual
z in dimension :. In the COMPARE-ON-ONE problem, the learner and the eval-
uator are compared based on only one of the evaluator’s dimensions, namely
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Fig.3. The grey areas show all evaluators that are solved by the learner in the figure.
Left: the COMPARE-ON-ALL game. A learner receives a positive outcome if it is equal
or greater than the evaluator in every dimension. Right: the COMPARE-ON-ONE game.
A learner receives a positive outcome if it is equal or greater in the evaluator’s highest
dimension.

the evaluator’s dimension with the highest value. The games are illustrated in
figure 3.

m = arg max e; (11)

1 if am>em

—1 otherwise (12)

Gonela, ) = {

While evaluators in the compare-on-all game can compare learners based

on all of their dimensions, this is not possible in the compare-on-one game.

Therefore, evaluators in different regions of the space must be maintained. This

results in a strong risk of maintaining evaluators for only some of the underly-
ing objectives, as desired.

5 Experimental Results

The setup is as follows. Initial values in each dimension are chosen uniformly
from [0, 0.05]. A new generation of individuals is created using mutation. Mu-
tation adds a value chosen uniformly from [—d — b,d — b] to a dimension i,
where d = 0.1 is the mutation distance and b = 0.05 (where used) is the mu-
tation bias. Mutation is applied to two randomly chosen dimensions. Thus, an
increase in one dimension will often be accompanied by a decrease in another,
and an improved interaction outcome does not imply improvement on all ob-
jectives. The size of learner and evaluator populations and of new generations
is 50, resulting in learner and evaluator sets of size 100. All experiments (except
the trajectory graph) are averaged over 100 runs.
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Fig.4. Left: Performance of DELPHI and a number of competitive methods on the 2-
dimensional COMPARE-ON-ALL problem. All methods achieve some progress on this
problem. Right: DELPHI and comparison methods on 5-dimensional COMPARE-ON-ONE
with mutation bias. Only the methods employing Pareto-Hillclimbing still achieve sus-
tained progress; the other methods overspecialize, and neglect one or more objectives.

We performed experiments with the COMPARE-ON-ALL and COMPARE-ON-
ONE game in 2-dimensional and 5-dimensional form, with and without muta-
tion bias. Due to space limits, we present results for the easiest and most diffi-
cult variants in the problem set: 2-dimensional COMPARE-ON-ALL without mu-
tation bias and 5-dimensional COMPARE-ON-ONE with mutation bias. For the
latter problem, 86% of the mutations that produce an increase in some dimen-
sion cause a (typically larger) decrease in some other dimension.

We first compare DELPHI to several competitive coevolution methods. In
AVG E, AVG L, the fitness of learners is the average score against evaluators,
vice versa. Individuals are selected into the next population with a fitness-
proportional probability. PROB E, PROB L views the outcomes as objectives, and
employs a standard EMOO method [8] sorting individuals based on the num-
ber of individuals they are dominated by and using the normalized rank as the
probability of selection. A stricter variant HALF E, HALF L selects the best half
of the population. Still more strict is a method replacing an existing individual
by any new individual that dominates it (DOM E, DOM L). Finally, we require
that the replacer must be the offspring of the replacee(P-HC E, P-HC L), so
that both learners and evaluators are Pareto-hillclimbers.

Figure 4 shows the average minimum value for the two-dimensional COMPARE-
ON-ALL problem. All competitive methods are able to achieve some progress.
DELPHI outperforms all of these, and makes remarkably constant progress.

To test whether choices made in developing DELPHI are necessary, we per-
form several control experiments. This time, the much more difficult COMPARE-
ON-ONE problem is used with five dimensions and with mutation bias. All
methods use the outcomes of interactions with evaluators as the objectives
for learners, and use the distinctions between learners as objectives for eval-
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Fig. 5. Trajectories in version of the COMPARE-ON-ONE problem where the underlying
objectives have been rotated 30 degrees anti-clockwise. The evaluators still identify the
underlying dimensions when these do not correspond to the variables of the problem.

uators. DOM E, SPREAD DIST L attempts to make evaluators spread over the
possible distinctions. The fitness contribution for making a distinction is shared
with other evaluators making the distinction. This competitive fitness sharing
[18] method was the most successful of several methods used in [7] when ap-
plied to distinctions, as it is here. P-HC E, P-HC L tests whether learners may
also benefit from the parent criterion; both learners and evaluators are Pareto-
hillclimbers. To test if the parent criterion is necessary in evaluator selection,
DOM E, DOM DIST L uses dominance for both learner and evaluator selection.

For this difficult test problem, only methods employing Pareto-Hillclimbing
for the evaluation of evaluators achieve sustained progress on all objectives, see
fig. 4. The comparison methods are unable to do so, and even deteriorate due to
overspecialization, i.e. values are not maintained or improved for all objectives
simultaneously. In summary, only DELPHI displays consistent and considerable
progress across all test problems.

Finally, we investigate whether evaluators identify the underlying objec-
tives when these have no direct correspondence to the variables of the problem.
To test this, individuals in COMPARE-ON-ONE are projected onto a rotated coor-
dinate system. The variables and operators of variation remain unchanged. As
the trajectories in figure 5 show, the evaluators approximately identify the new
underlying objectives of the problem, while learners progress evenly in both of
the extracted underlying dimensions. Thus, the identification of the underlying
objectives was not merely due to a correspondence between the variables and
objectives of the problem.

6 Conclusions

Coevolution in principle offers a potential for learning in problems where no
adequate evaluation function is known. We began by considering what the



ideal evaluation function would be if one would have access to the underlying
objectives of a problem. Since these underlying objectives are not available, ac-
tual evaluation in coevolution must be based on interactions between individ-
uals. The theoretical result of the article is that in the limit of finding all possible
distinctions, this evaluation becomes equal to the ideal evaluation function.

The result immediately suggests a practical operational criterion for approx-
imating the ideal evaluation function in the form of Ficici’s distinctions [7]. We
have developed an algorithm based on this principle called DELPHI. The al-
gorithm evaluates learners by using coevolving evaluators as objectives, while
these evaluators are evaluated by using their ability to make distinctions be-
tween learners as objectives. Strict criteria for learner and evaluator selection
are found to be instrumental in DELPHI's ability to achieve sustained progress.

DELPHI was found to substantially outperform comparison methods on sev-
eral abstract test problems of varying difficulty. Experimental evidence was pre-
sented indicating that the evaluators identify the underlying objectives of the
problem. While the current article has explored one particular algorithm, the
idea of approximating the ideal evaluation function can be taken up in many
different ways, and provides a principled approach to evaluation in coevolu-
tion. We therefore hope that this work may stimulate the development of new,
reliable algorithms for coevolution.

Appendix A: Proof of the Equivalence

Proof (Equivalence with the ideal evaluation function). To prove the equivalence
theorem, we show that given the interaction requirement for G, the coevolu-
tionary evaluation function Fi... equals the ideal evaluation function Figea:

Fegev(a,b) <= Figeal(a,b) (13)
doErp(a, b) <— d%m(a, b) (by (5) and (2)) (14)
o)ty
Ve € E} : G(a,e) > G(b,e) AJe € E} : G(a,e) > G(b,e)] (15)
— [Vi:a; > b; A3i:a; > b (by (6) and (3)) (16)
Assume: Ve € E} : G(a,e) > G(b,e) NJe € ET : G(a,e) > G(b,e) (17)
Assume: 3 : b; > q; (18)
=Jec E:G(be) > G(a,e) (by (4)) (19)
= Je € E} : G(b,e) > G(a,e) (by (8)) (20)
This contradicts (17). Therefore (18) cannot hold, so: (21)
Bi: b > a; (22)
=Vi:a; > b (23)

Furthermore: 3i : a; > b; (by (17, right) and (4)) (24)



Combining (23) and (24) proves the implication. To show the reverse implica-

tion:
Assume: Vi :a; > by A3t a; > b; (25)
Assume: Je € E : G(b,e) > G(a,e) (26)
3i: b; > a; (by (4)) (27)
This contradicts (25). Therefore (26) cannot hold, so: (28)
e e E: G(be) > G(a,e) (29)
=Vee E: G(a,e) > G(b,e) (30)
And since Ej is a subset of E: (31)
= Ve € E] : G(a,e) > G(b,e) (32)
de € E: G(a,e) > G(b,e) (by (25, right) and (4)) (33)
Jde € E} : G(a,e) > G(b,e) (by (33) and (8)) (34)
Combining (32) and (34) proves the reverse implication, and completes the
proof. ®
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