A Coevolutionary Approach to Representation Development

Edwin D. de Jong

Department of Computer Science
Brandeis University, Waltham, MA 02454-9110

Tim Oates

edwin@cs.brandeis.edu

oates@cs.umbce.edu

Computer Science and Electrical Engineering Department

University of Maryland Baltimore County
Baltimore, MD 21250

Abstract

The representation of a learning or search
problem can greatly impact its performance.
An alternative to hand-constructing an ap-
propriate representation is to let the learning
method adapt its own representation. We
investigate this in a setup where building
blocks and assemblies thereof are coevolved.
Building blocks may employ other building
blocks, thus leading to hierarchical construc-
tions. In experiments, this is observed to
lead to highly compact representations of se-
quences that are useful as building blocks.
The method is able to solve problems re-
quiring long sequences of primitive opera-
tors. Control experiments using a conven-
tional evolutionary method were much less
efficient, and did not find solutions to the
problems. Limitations of the current method
are discussed.

Keywords: Development of representations, Coevo-
lution, Bias learning

1. Introduction

The representation of a learning or search problem! is
known to greatly influence the efficiency with which
the problem can be learned, see e.g. (Lenat & Brown,
1985). While careful design of the representation is
important in practical applications of learning meth-
ods, the potential of this approach is limited by the

We consider a representation to be a set of vari-
ables and a corresponding interpretation that determines
to which elements in the learning problem the variables
refer.

skills and imagination of the practitioner, and it must
be done anew for each learning problem. Here, we
consider how a method for learning or search might
develop the representation it employs as part of the
learning problem in such a way that the representa-
tion is based on the problem.

2. Background

While some methods in machine learning such as
Bayesian networks offer the potential to learn struc-
ture, most learning methods are based on some form
of gradient descent, and operate by adapting the pa-
rameters rather than the structure of systems. One
exception is Layered Learning (Utgoff, Stracuzzi, &
Cochran, 2001), the idea of constructing new fea-
tures out of previously selected features. This idea
is also explored by Piater in his thesis (Piater, 2001).
Another direction within machine learning concerned
with transforming the initial representation is con-
structive induction, see e.g. (Kramer, 1994; Matheus
& Rendell, 1989).

In evolutionary computation, the idea of finding solu-
tions to large problems by combining building blocks
has a long history, see e.g. (Holland, 1975). Many such
methods view building blocks as high fitness schema,
i.e. variable settings that, when completed to form
solutions, have high fitness on average. However, it
cannot always be assumed that one setting for a par-
ticular set of variables suffices. Recently, algorithms
have become available that do not make this assump-
tion, by considering multiple values for the variables
in a building block, while still reducing the combina-
tions that are considered, see e.g. SEAM (Watson &
Pollack, 2000) and BOA (Pelikan, Goldberg, & Cantu-
Paz, 1999). A key idea in SEAM is to evaluate a com-
bination based on the performance of contexts that



employ it. This idea is used here in a variable length
setup. Related methods in genetic programming that
use encapsulation include GliB (Angeline & Pollack,
1992) and ADFs (Koza, 1994). The second idea that
characterizes our method is the use of strict tests to de-
termine whether a new building block will be formed.
By imposing strict tests, the inclusion of unnecessary
elements in building blocks can be reduced. This im-
proves the potential of the method to form many-
layered hierarchical structures of elements as building
blocks.

An important intuition behind the construction of
building blocks is that by limiting the combinations
of values that will be considered for some set of the
variables in a problem, the search space is effectively
reduced, since only certain parts of the space will be
visited. This makes clear that the construction of
building blocks or representations represents a bias.
An interesting feature of this bias is that it is not de-
fined entirely by the researcher, as is the case when a
search space is limited by excluding certain elements,
or skewing the distribution of the parts of the space
that will be visited. Rather, the parts of the space that
will be visited depend on the particular building blocks
that are formed, and is thus partially determined by
the problem. Thus, the development of representa-
tions can be seen as a form of bias learning (Baxter,
2000; Gordon & (eds.), 1995).

A popular form of bias learning is multi-task learn-
ing, where a sequence of related tasks is performed
so that the learning method may pick up useful bi-
ases in early problems and employ them in later ones,
e.g. (Baxter, 1995; Caruana, 1997; De Jong & Pollack,
2001; Peshkin & Jong, 2002). Here, bias learning is
performed within a single learning problem.

3. A Coevolutionary Approach

In this article, we view the development of representa-
tions as a coevolution problem by coevolving building
blocks and assemblies thereof. Coevolution refers to
a branch of evolutionary computation where the eval-
uation of individuals is influenced by other evolving
individuals?. Coevolution is of interest in that it pro-
vides a way in principle to let a search process develop
its own evaluation criteria. For example, in the co-
evolution of a backgammon player (Pollack & Blair,
1998), the need for providing an evaluation function
for backgammon strategies is circumvented by letting
the players play against other evolving individuals, so

2More precisely, in coevolution this influence is not lim-
ited to scaling effects as it is in conventional evolution, but
can affect the ranking of individuals.

Building blocks Assemblies

1 | L (turn left) Al| 31525
2 | R (turn right) A2| 22314
3 | M (move) A3| 52431
4 | P (put pixel) Ad| 41143
5|34 [MP] A5| 32512
6|55 [MPMP]

Figure 1. A coevolutionary setup for the development of
representations. Assemblies consist of building blocks, and
are evaluated based on their performance on the problem.
Building blocks are evaluated based on their role in assem-
blies; if a frequent combination of two building blocks is
the best combination for the role they fulfill in an assem-
bly, the combination forms a new building block and enters
the building block population. This leads to a hierarchy of
building blocks, and allows to make large non-random vari-
ations of assemblies by means of a single mutation.

that only the rules of the game must be provided.

The way in which coevolution develops evaluation cri-
teria is by basing evaluation on other evolving entities.
Here, this idea is used to evaluate candidate building
blocks. While complete individuals can be evaluated
based on their performance, i.e. some task-related fit-
ness or error measure, this is not the case for building
blocks. The value of a building block follows from
its potential to contribute to the fitness of individuals
that employ it. Thus, building blocks are evaluated
based on the extent to which they contribute to the
assemblies that employ them.

3.1. Coevolving Building Blocks and
Assemblies

The setup that will be employed here involves coevolu-
tion of building blocks and assemblies. Figure 1 shows
an illustration. An assembly is a candidate solution,
and consists of one or more building blocks. Initially,
the set of building blocks corresponds to the variables
of the problem. As the search progresses, new build-
ing blocks are formed by combining pairs of existing
building blocks. This allows for the formation of a
hierarchy of building blocks.

In detail, the mechanism operates as follows. Assem-
blies are evolved using a genetic algorithm with mu-
tation and crossover. Interestingly, since the building
blocks provide a potential to incorporate sequences of



primitives of arbitrary length, the assemblies can be
limited to a very small length (5 building blocks in
the experiments here); this avoids the issue of bloat
or code growth. As a result of this, the role of the
assemblies in the setup may be viewed as providing
a look-ahead search (Juille, 1999) that identifies effec-
tive combinations of building blocks, which in turn can
become new building blocks.

After each generation, the most frequent pair of build-
ing blocks occurring in assemblies is considered for
consolidation as a building block. However, in order
to avoid the formation of spurious building blocks, a
stringent test is imposed on candidate building blocks.
To evaluate a candidate building block, we take an
assembly that employs the pair of existing building
blocks forming the candidate building block. We then
consider all possible alternative combinations, i.e. all
combinations of two existing building blocks other
than the candidate combination. Only if the score
of the assembly using the candidate building block is
at least as good as the scores of the assemblies that
are obtained by replacing the candidate building block
with any of the alternative building blocks, and better
than some of these scores, we create the building block
and add it to the set of building blocks.

3.2. Bias Learning

Our motivation for investigating the development of
representations as part of learning is that it may pro-
vide a way to address certain learning problems that
involve large search spaces. Inevitably, any form of
generalization corresponds to a bias that can make the
learning problem highly effective for particular kinds
of problems, but unsuitable for others (Mitchell, 1980).

To clarify for what type of problems the approach we
describe here may be of benefit, we describe biases
incorporated by the method. Three main forms of bias
are employed, see figure 2:

e Modularity
e Repetitive modularity

e Hierarchical modularity

Modularity is the property that several variables in
a problem are dependent on one another as to what
their (near-)optimal settings, while the dependencies
between the module and variables outside the module
are weak compared to the former dependencies. Thus,
the settings of variables inside a module can be con-
sidered without considering all possible combinations
of the variables outside the module. This potentially

Assemblies

No bias: ABAA

BBAB

all combinations equally likely BABB

ABAB

Modularity: AACC

AADD

AA ccC BBCC

BB DD BBDD

Repetitive modularity: AAAA

AABB

AA BBAA

BB BBBB
Hierarchical modularity:

AAAA BBBB AAAA

A NN BBBB

AA AA BB BB

Figure 2. Three forms of bias are employed to make search
in large spaces feasible for certain problems: modularity,
repetitive modularity, and hierarchical modularity

provides a great increase in the complexity of problems
that can be successfully addressed (Simon, 1968). A
modularity bias refers to the assumption that modu-
larity is present in the problem. By searching for pairs
of elements in assemblies that have an optimal setting
in the context defined by the assembly and consolidat-
ing such pairs, we employ a modularity bias.

A particular form of modularity bias is that of repeti-
tive modularity; once a particular combination of ele-
ments is found to be useful, that combination will be
used with a higher probability in other parts of assem-
blies. By making successful combinations of elements
available as new building blocks, the probability that
such building blocks will be inserted in other parts of
assemblies is increased, thus resulting in a repetitive
modularity bias.

New building blocks are formed by combining elements
of assemblies, and assemblies are likely to use non-
primitive building blocks. Thus, new building blocks
that are formed are likely to be trees of existing build-
ing blocks. This produces a hierarchical modularity
bias that makes it possible for assemblies to specify
long, highly non-random sequences of primitive ele-
ments using only a few variables.



Finally, apart from the different forms of modularity
that are used, an important form of bias is that of
incremental construction; by starting with assemblies
that employ primitive building blocks only, the search
begins by considering short combinations of primitives.
The intuition that incremental construction is required
to arrive at long specifications has been noted in the
literature (Harvey, 1992). This idea can only bring
benefit to the extent to which the choices prior to de-
scription length increments can be maintained, thus it
implies a modularity bias.

4. Task Description

The aim of this work is to contribute to the develop-
ment of pattern recognition methods that can iden-
tify highly specific and complex patterns, i.e. pat-
terns whose specification involves a large numbers of
variables. Therefore, we define a concept learning
task where a correct solution requires a long descrip-
tion. Concept descriptions are sequences of primitives
(TURN LEFT, TURN RIGHT, MOVE, and PUT PIXEL).
The interpretation of a sequence produces a bitmap.
This bitmap is compared to the training image, and
the fraction of coinciding pixels is used as a member-
ship value for the concept to be learned. The difference
between this membership value and the binary class la-
bel yields the classification error that is returned to the
learning method. While the representation of concepts
is somewhat involved, it allows for capturing aspects
of the image in such a way that these aspects can be
used to modify the concepts that will be considered in
later stages of the search.

The training images are based on 16x16 bitmaps con-
taining simple line drawings, see figure 3. At each
generation, 20 positive training examples are gener-
ated, based on the target image, along with 20 nega-
tive training examples. To generate positive examples,
each pixel in the image is inverted with P=0.1. For the
negative examples, each pixel is on with P=0.5. Per-
fect solutions for these four problems require between
50 an 150 primitive operators, and thus satisfy the cri-
terion that long descriptions are required for correct
solutions.

5. Results

Figures 4 and 5 show the results of using the coevo-
lutionary method for representation development that
has been described. The graphs show the Hamming
distance between the image specified by the assem-
blies and the target image, averaged over ten runs.
This measure gives better insight into the results of

ﬂ i i

Figure 3. Test images used in the experiments: square,
staircase, triangle, and daisy.

0.1,

~-- Size 200
- Size 100

~-- Size 200
--- Size 100
- Size 50

Error
Error

0 250 750 1000 0 250 750 1000

500 500
Generations Generations

Figure 4. Results of the square (left) and staircase (right)
experiments. The graphs show the average error over evo-
lutionary time.

learning than the classification error that the learning
method itself receives, since the latter reflects the noise
added to the images.

As a control, we took the same algorithm but removed
the capacity to add building blocks to the given set of
primitives. This renders the algorithm equivalent to a
normal genetic algorithm. To compensate for the fact
that the assemblies are too short to represent correct
solutions, the first control uses a variable length setup,
where the initial length of assemblies is 5 as in the co-
evolutionary case. In addition, we tried a fixed length
setup for three different sizes (50, 100, and 200). As
the results graphs show, developing representations as
part of the learning process can result in great perfor-
mance increases, and can render otherwise infeasible
problems tractable.

To provide more insight into the operation of the
method, we consider an example run. Figure 6 shows
the error for the first run of the coevolutionary method
in the daisy experiment. The graphs displays inter-
leaved periods where progress speeds up and slows
down. In control runs that were inspected, progress
always slowed down, as in the averaged graphs. Our
interpretation of the phenomenon is that once new
building blocks are found, the search process can speed
up by searching in terms of the new representations.

Inspection of the run showed that by generation 30,
building blocks had developed that specify 8-pixel lines
in the most compact way possible, see figure 7. Shortly



-~ Size 200
--- Size 100
--- Size 50
Variable size
— Coevolution

Error

0 250 750 1000

500 1000
Generations

Figure 5. Results of the triangle (left) and daisy (right)
experiments. The graphs show the average error over evo-
lutionary time.

— Coevolution, example run

Error

Generations

Figure 6. Example run of the daisy experiment.

after this, the error graphs displays a steep descent un-
til generation 50, which resulted in assemblies specify-
ing the complete inner square of the figure. The next
and final descent corresponds to the addition of the
four smaller squares at the corners of the image.

6. Discussion

A limitation of the current initial representation is that
it can only represent fixed templates, i.e. particular
configurations of pixels. One direction that could be
explored from here is to employ primitives that pro-
vide the potential to perform computation by includ-
ing loops, internal variables, and conditional state-
ments. Such primitives are commonly used in genetic
programming, and the encapsulation of subroutines in
genetic programming is a well-known principle (Koza,
1994; Angeline & Pollack, 1992). The approach de-
scribed here provides a way to determine the value of
building blocks by assessing their role in assemblies,
rather than by assessing their performance using the
fitness function for complete individuals of the task. A
key idea it employs is to base the decision of whether
to include a particular new building block on a com-
parison with other combinations that could fulfill its
role. The use of a strict tests in making this deci-
sions reduces the number of unnecessary elements in
building blocks. This is of particular importance in
the formation of hierarchical structures.

g .
o
o
o

Figure 7. Building block developed in the example run
which draws a straight line of length 9 (see text).

7. Conclusions

We have described a coevolutionary approach to learn-
ing in which representations develop as part of learn-
ing. The setup consists of an evolving population of
assemblies that are evaluated based on their perfor-
mance in the problem, and a co-evolving population
of building blocks that these assemblies can employ.
The distinguishing feature of the work is that build-
ing blocks are evaluated based on their role in assem-
blies in a variable length setup. In order to clarify
for what type of problems the approach may provide
an efficient method, we describe the biases employed
by the method. These include modularity, repetitive
modularity, hierarchical modularity, and incremental
construction.

First experiments with the method have been de-
scribed using pattern recognition tasks. The method
was found to bring a substantial performance increase
compared to control experiments where the set of
building blocks was fixed to be the initial set of primi-
tives. Building blocks were found that capture aspects
of the problem in a compact way.

Research directions that could be explored in fur-
ther research include refined criteria for determining
whether a candidate building block is to be created,
and extending the expressiveness of the primitives by
providing them with the potential to perform compu-
tation.

A cknowledgement

The authors want to thank Richard Watson for useful
comments on this paper. EdJ gratefully acknowledges
an NWO Talent-fellowship.



References

Angeline, P. J., & Pollack, J. B. (1992). The evolu-
tionary induction of subroutines. In Proceedings
of the fourteenth annual conference of the cogni-
tive science society (p. 236-241). Bloomington,
Indiana, USA: Lawrence Erlbaum.

Baxter, J. (1995). Learning internal representations.
In Proceedings of the 8th annual conference on
computational learning theory (COLT’95) (pp.
311-320). New York, NY, USA: ACM Press.

Baxter, J. (2000). A model of inductive bias learn-
ing. Journal of Artificial Intelligence Research,
12, 149-198.

Caruana, R. (1997). Multitask learning. Machine
Learning, 28, 41-75.

De Jong, E. D., & Pollack, J. B. (2001). Utilizing
bias to evolve recurrent neural networks. In Pro-
ceedings of the international joint conference on
neural networks (Vol. 4, p. 2667-2672).

Gordon, D., & (eds.), M. desJardins. (1995). Special
issue on bias evaluation and selection. Machine
Learning, 20(1/2).

Harvey, I. (1992). The SAGA cross: the mechanics
of recombination for species with variable-length
genotypes. In R. Manner & B. Manderick (Eds.),
Parallel problem solving from nature (Vol. 2, p.
269-278). Amsterdam: North-Holland.

Holland, J. H. (1975). Adaptation in natural and ar-
tifical systems. Ann Arbor, MI: University of
Michigan Press.

Juille, H. (1999). Methods for statistical infer-
ence: FExtending the evolutionary computation
paradigm. Unpublished doctoral dissertation,
Brandeis University.

Koza, J. R. (1994). Genetic programming II: Au-
tomatic discovery of reusable programs. Cam-
bridge, MA: MIT Press.

Kramer, S. (1994). CN2-HCI: A two-step method
for constructive induction. In T. Fawcett (Ed.),
ML-COLT workshop on constructive induction
and change of representation (pp. 33-39). New
Brunswick, NJ.

Lenat, D., & Brown, J. (1985). Why AM and EU-
RISKO appear to work. Journal Artificial Intel-
ligence, 23(3), 269-294.

Matheus, C. J., & Rendell, L. A. (1989). Construc-
tive induction on decision trees. In N. S. Srid-
haran (Ed.), Proceedings of the 11th interna-
tional joint conference on artificial intelligence
(pp- 645-650). Detroit, MI, USA: Morgan Kauf-
mann.

Mitchell, T. M. (1980). The need for biases in learning
generalizations (Technical Report No. CBM-TR-
117). New Brunswick, New Jersey: Department
of Computer Science, Rutgers University.

Pelikan, M., Goldberg, D. E., & Cantu-Paz, E. (1999).
BOA: The bayesian optimization algorithm. In
W. Banzhaf, J. Daida, A. E. Eiben, M. H. Gar-
zon, V. Honavar, M. Jakiela, & R. E. Smith
(Eds.), Proceedings of the genetic and evolution-
ary computation conference (Vol. 1, pp. 525—
532). Orlando, Florida, USA: Morgan Kauf-
mann.

Peshkin, L. M., & Jong, E. D. de. (2002). Context-
based policy search: transfer of experience across
problems. In Proceedings of the icml-2002 work-
shop on development of representations. Sydney,
Australia.

Piater, J. H. (2001). Visual feature learning. Unpub-
lished doctoral dissertation, University of Mas-
sachusetts Amherst.

Pollack, J. B., & Blair, A. D. (1998). Co-evolution in
the successful learning of backgammon strategy.
Machine Learning, 32(1), 225-240.

Simon, H. A. (1968). The sciences of the artificial.
Cambridge, MA: MIT Press.

Utgoff, P. E., Stracuzzi, D. J., & Cochran, R. P.
(2001). Many-layered versus few-layered learn-
ing (Technical Report No. TR-01-14). Amherst,
MA: University of Massachusetts Computer Sci-
ence Deptartment.

Watson, R., & Pollack, J. (2000). Symbiotic combina-
tion as an alternative to sexual recombination in
genetic algorithms. In M. Schoenauer, K. Deb,
G. Rudolph, X. Yao, E. Lutton, J. J. Merelo,
& H.-P. Schwefel (Eds.), Parallel problem solv-
ing from nature, ppsn vi (Vol. 1917). Springer
Verlag.



