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Abstract. The identification of mechanisms by which constraints on
phenotypic variability are tuned in nature, and the implementation of
these mechanisms in Evolutionary Algorithms (EAs) carries the promise
of making EAs less “wasteful”. The constraints on phenotypic variabil-
ity are determined by the way genotypic variability maps to phenotypic
variability. This in turn is determined by the way that phenotypes are
represented genotypically. We use a formal model of an EA to show that
when some part of the genome is mutated with a much lower probability
than some other part, representations used to search the phenotype space
- and hence the constraints on phenotypic variability - can themselves be
thought to evolve. Specifically, we formally analyze a class of mutation-
only fitness proportional evolutionary algorithms and show that these
evolutionary algorithms implicitly implement what we call subrepresen-
tation evolving multithreaded evolution. These EAs conduct second-order
search over a predetermined set of representations and exploit promis-
ing representations within this set for first order evolutionary search.
We compare our analytical method and results with those employed in
schema analysis and note that by examining systems that are simpler
than the ones examined in a typical schema analysis (mutation is the
only variational operator in our systems), and by changing how we define
the subsets of the genotype space that are analyzed, we have obtained
results that are more intuitively understandable and are not specific to
a particular data-structure. 1

1 Introduction

Phenotypic variability, whether in natural or artificial evolution, is always con-
strained - a sunflower cannot be the offspring of an elephant, a travelling sales-
man path does not mutate with equal probability into all other TSP paths. An
1 This paper is similar to an identically titled workshop paper [2] (see

http://demo.cs.brandeis.edu/papers/burjorjee05.pdf). The use of the Kullback-
Liebler divergence operator in this paper simplifies the proof of our main result.
Additionally, in this paper we illuminate our analytical method and results by com-
paring them with those in other work on schema theory.
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1. INTRODUCTION

important observation is that many of the constraints on phenotypic variability
in natural evolution are not arbitrary. They are, instead, sensitive to the prob-
lem domain. To understand what we mean by this consider the variation present
in a litter of offspring of two healthy mammals. One constraint on this variation
is external symmetry - the bodies of all offspring are constrained to be roughly
symmetrical. The opposite is true in the plant kingdom - typically none of the
offspring of plants are symmetrical. Mammals require symmetry for efficient lo-
comotion (almost every locomoting machine that man has created has a roughly
symmetrical body), on the other hand plants do not locomote, so symmetry is
not important for their survival. Symmetry is thus an example of a constraint on
the phenotypic variability of mammals that is sensitive to the problem domain.
For brevity’s sake, when the constraints on phenotypic variability are sensitive
to the problem domain we shall say that the phenotypic variability is tuned to
the problem domain.

Let us think of higher fitness as an increase in the satisfaction of domain-
sensitive phenotypic constraints (such as symmetry). Then if phenotypic vari-
ability becomes tuned to a problem domain, evolutionary search becomes more
and more focused on phenotypes with higher fitness. Search is thus much less
“wasteful” than if the constraints on phenotypic variation are arbitrary. For ex-
ample, the evolution of mammals would probably have been much more wasteful,
i.e. inefficient, if only one in a thousand offspring is symmetric.

Many researchers in the field of evolutionary computation (EC) see natural
evolution as a search process and are interested in extracting its core algorithmic
essence in order to construct efficient search algorithms that can be applied to
difficult real world search problems. To this end those aspects of natural evolution
which are thought to be essential to effective search are identified, abstracted
and implemented in Evolutionary Algorithms (EAs). (e.g. genotype space, G-P
map, fitness function, variation and selection) The phenotypes of most EAs do
not however end up having variability that is tuned to the problem domain -
in later generations the majority of the offspring of fit individuals are typically
much worse than their parents. Biological offspring, on the other hand, tend to
have approximately the same fitness as their parents.

The tuning of phenotypic variability in nature is not a “frozen accident
from life’s origins” [10] but is itself the product of certain mechanisms inher-
ent within natural evolution. The identification of these mechanisms, and their
implementation in EAs carries the promise of making EAs less “wasteful” and
hence more efficient. In this paper we identify one such mechanism.

The constraints on phenotypic variability are determined by the way geno-
typic variability maps to phenotypic variability [10]. This in turn is determined
by the way that phenotypes are represented genotypically - different genetic rep-
resentations of some phenotype induce different constraints on the variability of
that phenotype [8].

We use a formal model of an EA to show that when some part of the
genome is mutated with a much lower probability than some other part, rep-
resentations used to search the phenotype space - and hence the constraints
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2. MATHEMATICAL PRELIMINARIES

on phenotypic variability - can themselves be thought to evolve. Specifically,
we formally analyze a class of mutation-only fitness proportional evolutionary
algorithms and show that these evolutionary algorithms implicitly implement
what we call subrepresentation evolving multithreaded evolution, i.e. these EAs
conduct second-order search over a predetermined set of representations and ex-
ploit promising representations within this set for first order evolutionary search.

Our theory is developed in sections 2-6. We discuss the results in section
7, and in section 8 we compare our analytical method and results with the
methods and results found in a typical schema analysis e.g. [4, 5, 7]. We conclude
that section by noting that by examining systems that are simpler than the ones
examined in a typical schema analysis and by changing how we define the subsets
of the genotype space that are analyzed, we have obtained results that are more
intuitively understandable and are not specific to a particular data-structure.

2 Mathematical Preliminaries

All sequences in this paper are zero based (the index of the first element is zero)
and infinite. Let X be some set. Then we denote some sequence of elements in
X by {pn}n≥0. For any i ∈ N, we denote the element with index i in {pn}n≥0

by pi. For some sets X, Y , and some function γ : X → Y , we use the notation
〈y〉γ to denote the set {x ∈ X | γ(x) = y}. We will drop the subscript γ from
this notation when it is clear from the context.

As in [8], for any set X we use the notation ΛX to denote the set of all prob-
ability distributions over X, i.e. ΛX denotes set {f : X → [0, 1] |

∑
x∈X f(x) =

1}.
We extend this notation to denote the set of all 1-parent (i.e. mutation-

only) transmission functions (see [1]) over some set as follows: for any set X,
the set of all 1-parent transmission functions {f : X × X → [0, 1] | ∀x′ ∈
X,

∑
x∈X f(x, x′) = 1} is denoted by ΛX

1 . Employing the notation used in [8],
we use conditional probability notation to denote a 1-parent transmission func-
tion (henceforth transmission function). Thus a transmission function f(x, x′) is
denoted f(x|x′).

3 Themes

Let G be some set of genotypes and let K be some set of objects that codify
“properties” that are possessed by elements of G. If the properties are such that
every genotype in G possess one and only one property in K (the properties
are mutually exclusive), then we say that K is a theme set of G. We call the
properties in K themes, and for any k ∈ K we call the subset of genotypes that
map to k the theme class of k. While we could have expressed these ideas in the
terminology of mathematical functions, we believe that the terminology just in-
troduced is better suited to our exposition. The correspondence between function
terminology and our terminology is made clear in the following definition.
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3. THEMES

Genotype Set G Theme set K Sample Parent Sample Child Theme Preserved

Bitstrings in Strings in 1011010111 1011100011 1011??????
{0, 1}10 {0, 1}4??????
S-expressions
with binary tree
structures that
express single
variable
polynomials,
i.e. binary trees
with leafs x and
internal nodes
drawn from
{+,×}

Any k ∈ K is
a multiset of
elements from
{x, +,×} s.t.
there exists a
binary tree
structure
which uses all
the elements
in k

+
bb""

+
ee%%

x x

×
ee%%

x x

×
QQ��

+
ZZ��

+
ee%%

x x

x

xThe multiset
{×, +, +,
x, x, x, x}

Seeded
L-Systems with
terminals drawn
from the
alphabet
Σ = {a, b, c, d}

The set of all
seeded
L-System
“skeletons”

[〈abbcbd〉
(a → b)
(b → bcab)
(c → ac)]

[〈acbdbd〉
(a → a)
(b → ccab)
(c → bc)]

[〈??????〉
(a →?)
(b →????)
(c →??)]

Table 1. Three different theme-preserving mutation operators

Definition 1. (Theme Map, Theme, Theme Set, Theme Class) Let X,
Y be sets and let β : X → Y be a function. We call β a theme map, call the
co-domain Y of β a β-theme set, call an element of Y a β-theme, and call the
preimage 〈y〉 of some y ∈ Y , the β-theme class of y.

Remark 1. Given the objects defined above, it is easily seen that the set of all
β-theme classes form a partition of X

The idea of a theme class is mathematically identical to the idea of a
forma discussed in [6] - each of these objects is simply an equivalence class
which belongs to the partition that is induced by some function. However the
application of this mathematical idea in this paper differs in spirit from its
application in [6]. There a forma describes some equivalence class of phenotypes,
whereas in this paper a theme class is an equivalence class of genotypes.

3.1 Theme Preservation and Alteration

Let G, K be sets such that G is countable and let β : G → K be some function.
For some mutation operator that operates on elements of G, we say that this
operator is β-preserving if it leaves the β-themes of of its argument unchanged,
i.e. the child produced by the mutation operator will always have the same β-
theme as its parent. We say that the mutation operator is β-altering if it always
changes the β-theme of its argument. Examples of theme-preserving mutation
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operators for three different kinds of genotype data-structures — bitstrings, S-
expressions and L-Systems are given below. The genotype set and theme set
of each operator is described in the first two columns of table 1. The 3rd and
4th columns of the table schematically show the effect of the three mutation
operators on three sample genotypes, and the last column schematically shows
the theme that is preserved in each case. We leave it to the reader to think of
the theme map, and a theme altering mutation operator in each case.

1. A mutation operator which operates on bitstrings of length ten and only
modifies the last six bits of its argument.

2. A mutation operator which takes a S-expression for a polynomial as an
argument and changes the tree structure of the S-expression in some way
while leaving the values of the nodes unchanged.

3. A mutation operator which takes a seeded L-system2 over the alphabet
{a, b, c, d} as its argument and substitutes a symbol for another symbol in
the seed string and the right hand sides of the rewrite rules - it does not
add or delete rewrite rules, does not change the number of symbols in a seed
string or rewrite rule, and does not change the left hand side of the rewrite
rules.

Theme preserving and altering mutation can be modelled by transmission
functions with appropriate constraints.

Definition 2. (Preserving and Altering Transmission Functions) Let
X, Y be some sets, let β : X → Y be a function, let M ∈ ΛX

1 be a transmission
function. We say that M is β-preserving if

∀x, x′ ∈ X, β(x) 6= β(x′) ⇒ M(x|x′) = 0

and say that M is β-altering if

∀x, x′ ∈ X, β(x) = β(x′) ⇒ M(x|x′) = 0

The following proposition gives us a useful property of a preserving trans-
mission function.

Proposition 1. Let X, Y be some sets, let β : X → Y be a function, let M ∈ ΛX
1

be a β-theme-preserving transmission function. Then,

∀y ∈ Y,∀x′ ∈ 〈y〉
∑

x∈〈y〉

M(x|x′) = 1

Proof. By definition of a transmission function we have that ∀x′ ∈ X,
∑

x∈X M(x|x′) =
1. But by (def 2 ), ∀y ∈ Y , ∀x′ ∈ 〈y〉 and ∀x 6∈ y , M(x|x′) = 0. Hence∑

x∈〈y〉 M(x|x′) = 1

2 In this paper we call a tuple consisting of 1) an L-system over some alphabet Σ and
2) a string in Σ∗, a seeded L-System. The genotypes in the evolutionary algorithms
in [8] are seeded L-Systems
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4 Transmaps

In this paper we will focus our attention on EAs in which mutation is the only
form of variation and selection is fitness proportional. We will call such EAs
basic fitness proportional EAs or bfpEAs for short. The representation used by
some bfpEA to search some set of objects is determined by 1) an alternate set of
software objects called genotypes, 2) a function that maps genotypes to objects
in the search space, and 3) the mutation operator that stochastically produces
some child genotype given some parent genotype. A transmap, defined below, is
our model for a representation.

Definition 3. (Transmap) A transmap is a 4-tuple (G, P, φ,M) such that G
is a countable set called the genotype set, P is some set called the phenotype set,
φ : G → P is called the growth map, and M ∈ ΛG

1 is a 1-parent transmission
function.

Let P be some set of objects (e.g. sorting networks, polynomial functions,
plant morphologies, etc.) Then, given some representation for P we can construct
a transmap B that models this representation as follows: 1) the search space P
of the representation is the phenotype set of B, 2) the alternate set of software
objects is the genotype set of B, 3) the function that maps the software objects to
objects in the search space is the growth map of B, 4) the effect of the mutation
operator of the representation is modelled by the transmission function of B.

4.1 Subtransmaps

In this section we show how, a transmap B with a β-preserving transmission
function, determines a set of transmaps such that each transmap in this set is
in one-to-one correspondence with some β-theme. The transmaps in this set are
called subtransmaps of B.

For some function f : X → Y , and some A ⊂ X, the restriction of f to A
is denoted f |A. We extend the notion of restriction to functions whose domain
is the cross-product of the same set as follows: for a function g : X × X → Y ,
the restriction of g to A, denoted g|A is a function of type A×A → Y such that
for any a1, a2 ∈ A, g|A(a1, a2) = g(a1, a2).

Proposition 2. Let G, K be sets, let β : G → K be some function and let
M ∈ ΛG

1 be a β-preserving transmission function. Then, for any k ∈ K, M |〈k〉 ∈
Λ〈k〉

Proof. For any k in K, and any g′ ∈ 〈k〉 ,
∑

g∈G M(g|g′) = 1. But by (def
2), ∀g 6∈ 〈k〉 , M(g|g′) = 0. So,

∑
g∈〈k〉 M(g|g′) = 1, which implies that∑

g∈〈k〉 M |〈k〉 (g|g′) = 1

Definition 4. ((β, k)-Subtransmap) Let B = (G, P, φ,M) be a transmap s.t.
for some set K, β : G → K is a function and M is β-preserving. We define the
(β, k)-subtransmap of B, denoted B|〈k〉, to be the transmap (〈k〉 , P, φ|〈k〉 ,M |〈k〉 ).
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4. TRANSMAPS

To see that (〈k〉, P, φ|〈k〉,M |〈k〉) is indeed a transmap note that M |〈k〉 ∈
Λ
〈k〉
1 by proposition 2 and φ|〈k〉 is of type 〈k〉 → P by definition of restriction.

For some β : G → K, suppose R is a representation with a mutation
operator that preserves β, suppose B is a bfpEA which uses R and for some
theme k, suppose all the genotypes in the initial population of B have the same
theme k ∈ K. Then, as the mutation operator of B is β-preserving, all genotypes
in all the generations of an evolutionary run of B will have theme k. Therefore,
we can define a new representation Rk which is isomorphic to R over 〈k〉 by
“pulling” the theme k out of the genotypes in 〈k〉 and “pushing” it into the
mutation operator and growth function of Rk s.t. when B uses R and starts
with a k-themed initial population, its search behavior is the same as if it used
Rk and started with an isomorphic initial population in the genotype set of Rk.
Let us call Rk a subrepresentation of R. Then a subtransmap, as defined above,
is a model of a subrepresentation.

4.2 (β, ω)-Preserving Transmaps

Definition 5. (Rate Operator) Let M1,M2 ∈ ΛG
1 be transmission func-

tions. For any ω ∈ [0, 1] we define the Rate Operator Rω : ΛG
1 × ΛG

1 → ΛG
1 as

follows:

∀g, g′ ∈ G, Rω(M1,M2)(g, g′) = ωM1(g|g′) + (1− ω)M2(g|g′)

To see that for any set G and ω ∈ [0, 1], the range of Rω is indeed ΛG
1 , observe

that ∀M1,M2 ∈ ΛG
1 ,∀g′ ∈ G,

∑
g∈G

Rω(M1,M2)(g|g′) = ω

∑
g∈G

M1(g|g′)

 +

(1 − ω)

∑
g∈G

M2(g|g′)

 = ω + (1 − ω) = 1

Definition 6. ((β, ω)-preserving Transmap) Let B = (G, P, φ,M) be a transmap,
for some set K, let β : G → K be a function and let ω ∈ [0, 1]. B is said to be
(β, ω)-preserving if there exists M1,M2 ∈ ΛG

1 such that M1 is β-preserving, M2

is β-altering and M = Rω(M1,M2).

Remark 2. Note that for any (β, ω)-preserving transmap (G, P, φ,M), the pre-
serving and altering components of M (M1 and M2 in the definition above) are
unique. We denote them as MP and MA respectively.

Suppose mutation in some representation is β-preserving with some prob-
ability ω and β-altering mutation with probability (1−ω), then it is easy to see
how we could model such a representation using a (β, ω)-preserving transmap.
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5 Evolution Machines

Definition 7. (Evolution Machine). An evolution machine – which we also
call an EM – is a 3-tuple (B, f, s) such that B = (G, P, φ,M) is a transmap,
f : P → R+ is called the fitness function and s ∈ ΛG is called the initial genotype
distribution.

An evolution machine is a collection of all the formal objects needed to
model an evolutionary run of a bfpEA. A bfpEA, which was introduced in section
4, is similar to a Simple Genetic Algorithm as defined in [9] in all respects except
that 1) it performs fitness proportional selection (an SGA may use other selection
methods), 2) its genotypes may be instances of arbitrary datatypes (SGAs use
only bitstrings), and 3) mutation is its only variational operator (SGAs also use
a recombination operator).

Populations in a bfpEA are modelled as distributions of an EM. In order
to define how these distributions change from generation to generation we recall,
and extend, the following operators from [9] and [8].

Definition 8. (Selection Operator) Let X be some set and let f : X → R+

be some function. We define the Selection Operator Sf : ΛX → ΛX as follows:

(Sfp)(x) =
f(x)p(x)∑

x′∈X

f(x′)p(x′)

The selection operator is parameterized by a fitness function. It takes a
distribution pX over some set X as its argument and redistributes the probability
mass of the distribution over the elements of X in proportion to the fitness of the
elements and their probability mass in pX . In typical usage of S in the literature,
the set X is the genotype set. In this paper S will also be used to express meta-
selection applied to a distribution over a theme set. The precise sense in which
we use the phrase meta-selection will become clear later on.

Definition 9. (Expected Fitness Operator) Let X be some set, and f :
X → R+ be some function. We define the expected fitness operator Ef : ΛX →
R+ as follows:

Ef (p) =
∑
x∈X

f(x)p(x)

The expected fitness operator will be useful in defining the theme fitness
function later on. It can also be used to express the selection operator more
compactly as follows.

Remark 3. The selection operator can be expressed in terms of the Expected
Fitness Operator as follows:

(Sfp)(x) =
f(x)p(x)
Ef (p)
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6. ANALYSIS OF A (β, ω)-PRESERVING EM

Definition 10. (Transmission Operator3) Let X be a set, and let M ∈ ΛX
1

be a transmission function over X. We define the transmission operator TM :
ΛX → ΛX as follows:

(TMp)(x) =
∑

x′∈X

M(x|x′)p(x′)

The transmission operator will be used to model the effect of mutation on
the genotypes that are selected as parents in each generation of a bfpEA

Definition 11. (Evolution Epoch Operator) Let B = (G, P, φ, T ) be a
transmap, and let f : P → R+ be some function. We define the evolution epoch
operator G(B,f) : ΛG → ΛG as follows:

G(B,f)(p) = TM ◦ Sf◦φp

Given some bfpEA, an evolution epoch operator that is parameterized by
the bfpEA’s representation and fitness function models the advancement by one
generation of a population of genotypes in the bfpEA. In section 6 we will see
that when the mutation operator of a bfpEA is theme preserving, this operator
can be used to express the advancement of a sub-population of genotypes that
share the same theme.

The following definition associates a sequence of genotypic distributions
with an EM using the operators we defined above. This sequence is a model of
the generations of genotypic populations that are generated by a bfpEA.

Definition 12. (Genotype Distribution Sequence of an EM). Let E =
(B, f, s) be some evolution machine. The genotype distribution sequence of E is
a sequence {pt}t of elements in ΛG s.t. p0 = s and for any t ∈ N:

pt+1 = G(B,f)p
t

5.1 (β, ω)-preserving EMs

For some β and some ω, if the transmap of an EM E is (β, ω)-preserving then we
say that E is (β, ω)-preserving. Consider a bfpEA Q, such that mutation of any
genotype in Q is β-preserving with probability ω and β-altering with probability
(1−ω). Clearly, Q can be modelled by a (β, ω)-preserving EM. Hence we call Q
a (β, ω)-preserving bfpEA.

6 Analysis of a (β, ω)-preserving EM

The following definition recalls the projection operator described in [9] and [8].
A projection operator projects a distribution over the domain of some function
to the range of that function. The projection function is typically used to project
distributions over the genotype set to the phenotype set. Here we will also use
it to project genotype distributions onto theme sets.
3 also called the Mixing Operator in [9] and [8]
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6. ANALYSIS OF A (β, ω)-PRESERVING EM

Definition 13. (Projection Operator) Let X, Y be some sets and let γ :
X → Y be a function. We define the projection operator, Ξγ : ΛX → ΛY as
follows:

(Ξγp )(y) =
∑

x∈〈y〉

p(x)

We call Ξγp the γ-projection of p. To see that the range of Ξγ is indeed
ΛY , i.e. that a projected distribution is also a distribution, note that for any
p ∈ ΛX ,∑

y∈Y

∑
x∈〈y〉

p(x) =
∑
x∈X

p(x) = 1

Given a countable set X, some set Y , a distribution pX over X and some
function-map γ : X → Y , then for any element y ∈ Y such that (Ξγp)(y) > 0
we can define a new distribution over 〈y〉 by normalizing the probability mass
of elements in 〈y〉 by the sum of their probability masses. We call this new
distribution the γ-conditional distribution of p given k. Formally,

Definition 14. (Projection Conditional Distribution) Let X, Y be sets
and let γ : X → Y be a function. Let p ∈ ΛX be some distribution. For any
y ∈ Y such that (Ξγp)(y) > 0, we define the γ-conditional distribution of p
given y, to be a distribution q ∈ Λ〈y〉 s.t.

q(x) =
p(x)

(Ξγp)(y)

The following definition describes a function that aggregates the fitness of
all instances of a given theme in some generation.

Definition 15. (Theme Fitness Function) Let G, K be sets, let β : G → K
be a function, let E be an evolution machine with genotype set G, and let {pt

G}t≥0

be the genotype distribution sequence of E. For any t ∈ Z+
0 , let pt

K be the β-
projection of pt

G, and for all k ∈ K such that pt
K(k) > 0, let pt

〈k〉 be the projection
conditional distribution of pt

G given k. Then the β-theme fitness function of E
at step t, βFt

E : K → R+ is as follows:

βFt
E(k) =

{
Ef◦φ|〈k〉(

ωpt
〈k〉) if ωpt

K(k) > 0
0 otherwise

An important lemma is as follows:

Lemma 1 (Theme Preservation Lemma). For all ω ∈ [0, 1], let Bω =
(G, P, φ,M) be a transmap such that for some set K and some β : G → K,
Bω is (β, ω)-preserving. Let Eω = (Bω, f, s) be a (β, ω)-preserving EM, and let
{ ωpt

G}t≥0 be the genotype distribution sequence of Eω. For all t ∈ Z+
0 , let ωpt

K
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6. ANALYSIS OF A (β, ω)-PRESERVING EM

be the β-projection of ωpt
G. For all k ∈ K such that ωpt

K(k) > 0, let ωpt
〈k〉 be the

β-conditional distribution of ωpt
G given k. Then, for all t ∈ Z+

0 :

D(S βFt
Eω

( ωpt
K) || ωpt+1

K ) ≤ log
1
ω

and for all k ∈ K such that ωpt
K(k) > 0,

D(G(B1|〈k〉,f)( ωpt
〈k〉) ||

ωpt+1
〈k〉 ) ≤ log

(
1 +

1− ω

ω(S βFt
Eω

ωpt
K)(k)

)
where D is the Kullback-Liebler Divergence4.

The central result of this paper follows from this lemma by treating the
right-hand-sides of both inequalities as functions of ω and by observing that
these functions are continuous over the interval (0,1].

Theorem 1 (Theme Preservation Theorem). For all t ∈ Z+
0 , as ω → 1,

ωpt+1
K → S βFt

Eω
( ωpt

K) (1)

and for all k ∈ K such that ωpt
K(k) > 0,

ωpt+1
〈k〉 → G(B1|〈k〉,f)( ωpt

〈k〉) (2)

with equality when ω = 1

Before we begin the proof of the lemma, let us understand the implications of the
theme preservation theorem. When ω = 1, for any k ∈ K such that 1p0

K(k) > 0,
{ 1pt

〈k〉}t≥0 is the genotype distribution sequence of the EM E1
k = (B1|〈k〉, f, 1p0

〈k〉).
Let us call such an EM a (β, k)-subEM of E1, let us call the genotype distri-
bution sequence of E1 the evolutionary process of E1 and for any k ∈ K, let
us call the genotype distribution sequence of E1

k the evolutionary thread of E1
k.

Then, equation (2) shows that evolutionary process of E1 can be decomposed,
or “factored”, into the evolutionary threads of subEMs of E1. For any k ∈ K
such that 1pt

K(k) > 0, the (β, k)-subEM uses the (β, k)-subtransmap of B1. Thus
there is a correspondence between instantiated themes and evolutionary threads.
Each thread can be thought to evolve the non-thematic parts of all genotypes

4 For any two distributions p and q over the same domain, the Kullback-Liebler diver-
gence D(p || q) is an asymmetric measure of the “distance” between p and q. It has
the property that D(p || q) = 0 ⇒ p = q. More technically (and less relevantly), it
is a measure of the inefficiency of assuming that a distribution over some domain is
q when in fact it is p. Given an optimal code for p, the lower bound of the average
number of bits per symbol needed to communicate symbols drawn from p is H(p).
If however an optimal code for q is used for communication then the lower bound
of the average number of bits per symbol needed to send symbols drawn from the
distribution p is H(p) + D(p || q) [3]
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6. ANALYSIS OF A (β, ω)-PRESERVING EM

which share some common theme. For these reasons we will call equation (2) the
theme-thread correspondence equation.

Observe that by the definition of 1pt
〈k〉 for all t in the premise of the

theorem, we have that in any generation t the “weighting” of the population of
any sub-EM E1

k at generation t within the overall population of E1 is determined
by the probability mass of k given by 1pt

K(k). The sequence { 1pt
K}t∈Z+

0
proceeds

according to equation (1). Unpacking this equation we see that the probability
mass of the themes in some generation t+1, given by 1pt+1

K , is determined by the
application of the selection operator to the distribution 1pt

K . The fitness function
employed by the selection operator is the theme fitness function βFt

E1 defined
earlier. We call equation (1) the theme selection equation because it shows that
when ω = 1 ordinary selection of the genotypes implicitly implements selection
over the themes. The only way that the evolutionary threads interact is by
the transfer of theme probability mass between threads in each generation as
described by the theme selection equation.

When ω ≈ 1 the theme preservation corollary shows that the theme selec-
tion equation and the theme-thread correspondence equation hold approximately
in each generation. We will explore the consequences of this in section 7. We now
prove the lemma.

Proof. The proof of the first inequality rests on two claims.

Claim 1 For all ω ∈ [0, 1], t ∈ Z+
0 ,X

g∈〈k〉

(TMP Sf◦φ
ωpt

G)(g) = (S βFt
Eω

ωpt
K)(k)

Claim 2 let u, q, r ∈ ΛK be distributions such that u(k) = ωq(k) + (1− ω)r(k). Then
D(q||u) ≤ log 1

ω

We assume these claims for now and prove them later. For all ω ∈ [0, 1], t ∈ Z+
0 , see

that

ωpt+1
K (k) =

X
g∈〈k〉

ωpt+1
G (g)

= ω
X

g∈〈k〉

TMP Sf◦g
ωpt+1

G (g) + (1− ω)
X

g∈〈k〉

TMASf◦φ
ωpt+1

G (g)

= ωS βFt
Eω

ωpt
K(k) + (1− ω)

X
g∈〈k〉

TMASf◦φ
ωpt+1

G (g)

Where the last equality follows by claim 1. Substituting (S βFt
Eω

ωpt
K)(k) for q(k) andP

g∈〈k〉
TMA(Sf◦φ

ωpt+1
G )(g) for r(k) in claim 2, see that u(k) = ωpt+1

K (k). So, D(S βFt
Eω

ωpt
K || ωpt+

K ) ≤

log 1
ω
.

The proof of the second inequality of the lemma rests on two further claims.

Claim 3 For all ω ∈ [0, 1], t ∈ Z+
0 , k ∈ K such that pt

K(k) > 0,

(TMP Sf◦φ
ωpt

G)(g)P
g′∈〈k〉

(TMP Sf◦φ
ωpt

G)(g′)
= (G(B1|〈k〉,f)

ωpt
〈k〉)(g)
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6. ANALYSIS OF A (β, ω)-PRESERVING EM

Claim 4 Let q, r ∈ ΛG be distributions. For any k ∈ K such that (Ξβq)(k) > 0, let
u, v ∈ Λ〈k〉 be defined as follows:

u(g) =
ωq(g) + (1− ω)r(g)P

g′∈〈k〉
ωq(g′) + (1− ω)r(g′) + (1− ω)r(g′)

v(g) =
q(g)P

g′∈〈k〉
q(g′)

.

then,

D(v||u) ≤ log

�
1 +

1− ω

ω
P

g′∈〈k〉 q(g′)

�
.

Once again we assume these claims for now and prove them later. For all ω ∈ [0, 1],
t ∈ Z+

0 , k ∈ K such that ωpt
K(k) > 0,

ωpt+1
〈k〉 (g) =

ωpt+1
G (g)P

g′∈〈k〉
ωpt+1

G (g′)

=
ωTMP Sf◦φ

ωpt
G(g) + (1− ω)TMASf◦φ

ωpt
G(g)P

g∈〈k〉 ωTMP Sf◦φ
ωpt

G(g′) + (1− ω)TMASf◦φ
ωpt

G(g′)

Substituting (TMP Sf◦φ
ωpt

G) for q and (TMASf◦φ
ωpt

G) for r in claim 4, see that u =
ωpt+1

〈k〉 and by claim 3, v = G(B1|〈k〉,f)
ωpt

〈k〉(g). So,

D(G(B1|〈k〉,f)
ωpt

〈k〉|| ωpt+1
〈k〉 ) = log

�
1 +

1− ω

ω
P

g′∈〈k〉 TMP Sf◦φ
ωpt

G(g)

�

= log

�
1 +

1− ω

ω(S βFt
Eω

ωpt
K)(k)

�

where the last equality follows by claim 1.
Proof of Claim 1:

X
g∈〈k〉

TMP Sf◦φ
ωpt

G(g) =
X

g∈〈k〉

X
g′∈G

MP (g|g′)(Sf◦g
ωpt

G)(g′)

=
X
g′∈G

(Sf◦φ
ωpt

G)(g′)
X

g∈〈k〉

MP (g|g′)

For any k ∈ K any g ∈ 〈k〉, and any g′ 6∈ 〈k〉, by definition of a Preserving Transmission
Function in (def 2), MP (g|g′) = 0. So,

X
g∈〈k〉

TMP Sf◦φ
ωpt

G(g) =
X

g′∈〈k〉

(Sf◦φ
ωpt

G)(g′)
X

g∈〈k〉

MP (g|g′)

By proposition 1,

X
g∈〈k〉

TMP Sf◦φ
ωpt

G(g) =
X

g′∈〈k〉

(Sf◦φ
ωpt

G)(g′)
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By definition of the Selection Operator in terms of the Expected Fitness Operator in
(remark 3),

X
g∈〈k〉

TMP Sf◦φ
ωpt

G(g) =
X

g′∈〈k〉

f ◦ φ(g′) ωpt
G(g′)

Ef◦φ( ωpt
G)

(3)

We examine the following two cases,

case i: k such that ωpt
K(k) = 0. This implies that for all g ∈ 〈k〉, ωpt

G(g) = 0, so using
equation (3),

P
g∈〈k〉

TMP Sf◦φ
ωpt

G(g) = 0.

case ii: k such that ωpt
K(k) > 0. Using the definition of ωpt

〈·〉 in the numerator

X
g∈〈k〉

TMP Sf◦φ
ωpt

G(g) =
X

g′∈〈k〉

f ◦ φ(g′) ωpt
K(k) ωpt

〈k〉(g
′)

Ef◦φ( ωpt
G)

=

ωpt
K(k)

P
g′∈〈k〉 f ◦ φ(g′) ωpt

〈k〉(g
′)

Ef◦φ( ωpt
G)

=

ωpt
K(k)

P
g′∈〈k〉 f ◦ φ|〈k〉(g′) ωpt

〈k〉(g
′)

Ef◦φ( ωpt
G)

where the last equation follows from the definition of restriction. Using the Expected
Fitness Operator defined in (def 9) to express the numerator,

X
g∈〈k〉

TMP Sf◦φ
ωpt

G(g) =

ωpt
K(k)Ef◦φ|〈k〉(

ωpt
〈k〉)

Ef◦φ( ωpt
G)

(4)

By expansion of the Expected Fitness Operator in the denominator using (def 9),

X
g∈〈k〉

TMP Sf◦φ
ωpt

G(g) =

ωpt
K(k)Ef◦φ|〈k〉(

ωpt
〈k〉)P

g′∈G f ◦ φ(g′) ωpt
G(g′)

Using the definition of ωpt
〈·〉 in the denominator,

X
g∈〈k〉

TMP Sf◦φ
ωpt

G(g) =

ωpt
K(k)Ef◦φ|〈k〉(

ωpt
〈k〉)P

k′∈K

P
g′∈〈k′〉 f ◦ φ(g′) ωpt

K(k′) ωpt
〈k′〉(g

′)

=

ωpt
K(k)Ef◦φ|〈k〉(

ωpt
〈k〉)P

k′∈K
ωpt

K(k′)
P

g′∈〈k′〉 f ◦ φ(g′) ωpt
〈k′〉(g

′)

Using the Expected Fitness Operator defined in (def 9) to express the denominator,

X
g∈〈k〉

TMP Sf◦φ
ωpt

G(g) =

ωpt
K(k)Ef◦φ|〈k〉(

ωpt
〈k〉)P

k′∈K
ωpt

K(k′)Ef◦φ|〈k′〉
( ωpt

〈k′〉(g
′))

Hence for all k ∈ K, using the definition of the Theme Fitness Function in (def 15),

X
g∈〈k〉

TMP Sf◦φ
ωpt

G(g) =
pt

K(k) βFt
Eω (k)P

k′∈K
ωpt

K(k′) βFt
Eω (k′)
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Using the definition of the Selection Operator (def 8), we obtain the result in claim 1.

X
g∈〈k〉

TMP Sf◦φ
ωpt

G(g) = S βFt
Eω

( ωpt
K)

Proof of Claim 3: By the definition of the Transmission operator in (def 10), for all
k ∈ K such that ωpt

K(k) > 0, and for all g ∈ 〈k〉,

(TMP Sf◦φ
ωpt

G)(g)P
g′∈〈k〉

(TMP Sf◦φ
ωpt

G)(g′)
=
X
g′∈G

MP (g|g′)Sf◦g
ωpt

G(g′) · 1P
g′∈〈k〉

(TMP Sf◦φ
ωpt

G)(g′)

Using the alternate form of the Selection Operator given in (remark 3) and using (4)
we have that,

(TMP Sf◦φ
ωpt

G)(g)P
g′∈〈k〉

(TMP Sf◦φ
ωpt

G)(g′)
=

P
g′∈G MP (g|g′)f ◦ φ(g) ωpt

G(g′)

Ef◦φ( ωpt
G)

· Ef◦φ( ωpt
G)

ωpt
K(k)Ef◦φ|〈k〉(

ωpt
〈k〉)

Cancelling terms and consolidating yields

(TMP Sf◦φ
ωpt

G)(g)P
g′∈〈k〉

(TMP Sf◦φ
ωpt

G)(g′)
=

P
g′∈G MP (g|g′)f ◦ φ(g′)

ωpt
G(g′)

ωpt
K

(k)

Ef◦φ|〈k〉
ωpt

〈k〉

Note that for any g ∈ 〈k〉 and any g′ 6∈ 〈k〉, M(g|g′) = 0. Also note that
ωpt

G(g)
ωpt

K
(k)

=
ωpt

〈k〉(g). Hence,

(TMP Sf◦φ
ωpt

G)(g)P
g′∈〈k〉

(TMP Sf◦φ
ωpt

G)(g′)
=

P
g′∈〈k〉 MP (g|g′)f ◦ φ(g′) ωpt

〈k〉(g
′)

Ef◦φ|〈k〉
ωpt

〈k〉

By the definition of Restriction of a function,

(TMP Sf◦φ
ωpt

G)(g)P
g′∈〈k〉

(TMP Sf◦φ
ωpt

G)(g′)
=

P
g′∈〈k〉 MP |〈k〉(g|g′)f ◦ φ|〈k〉(g′) ωpt

〈k〉(g
′)

Ef◦φ|〈k〉
ωpt

〈k〉

Using the alternate form of the Selection Operator given in (remark 3), the definition
of the Transmission Operator in (def 10), we get

(TMP Sf◦φ
ωpt

G)(g)P
g′∈〈k〉

(TMP Sf◦φ
ωpt

G)(g′)
=
X

g∈〈k〉

MP |〈k〉(g|g′)(Sf◦φ|〈k〉
ωpt

〈k〉)(g
′)

= (TMP |〈k〉Sf◦φ|〈k〉p
t
〈k〉)(g)

As MP is theme preserving, by (proposition 2), (〈k〉, P, MP |〈k〉, φ|〈k〉) is a transmap.
Hence, using the definition of the Evolution Epoch Operator in (def 11),

(TMP Sf◦φ
ωpt

G)(g)P
g′∈〈k〉

(TMP Sf◦φ
ωpt

G)(g′)
= (G((〈k〉,P,MP |〈k〉,φ|〈k〉),f)p

t
〈k〉)(g)
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But (〈k〉, P, MP |〈k〉, φ|〈k〉) = (G, P, MP , φ)|〈k〉 = B1|〈k〉. We thus obtain the result in
claim 3.

Proof of Claim 2:

D(q||u) =
X
k∈K

q(k) log
q(k)

ωq(k) + (1− ω)r(k)

≤
X
k∈K

q(k) log
q(k)

ωq(k)

= log
1

ω
·
X
k∈K

q(k)

= log
1

ω

Proof of Claim 4:

D(v||u) =
X

g∈〈k〉

q(g)P
g′∈〈k〉

q(g′)
log

�
q(g)P

g′∈〈k〉
q(g′)

·
P

g′∈〈k〉 ωq(g′) + (1− ω)r(g′)

ωq(g) + (1− ω)r(g)

�

≤
X

g∈〈k〉

q(g)P
g′∈〈k〉

q(g′)
log

�
q(g)P

g′∈〈k〉
q(g′)

·
P

g′∈〈k〉 ωq(g′) + (1− ω)r(g′)

ωq(g)

�

=
X

g∈〈k〉

q(g)P
g′∈〈k〉

q(g′)
log

�P
g′∈〈k〉 ωq(g′) + (1− ω)r(g′)

ω
P

g′∈〈k〉
q(g′)

�

See that
P

g′∈〈k〉
r(g′) ≤ 1. So,

D(v||u) ≤
X

g∈〈k〉

q(g)P
g′∈〈k〉

q(g′)
log

�P
g′∈〈k〉 ωq(g′) + (1− ω)

ω
P

g′∈〈k〉
q(g′)

�

= log

�
1 +

1− ω

ω
P

g′∈〈k〉
q(g′)

� P
g∈〈k〉 q(g)P

g′∈〈k〉 q(g′)

= log

�
1 +

1− ω

ω
P

g′∈〈k〉
q(g′)

�

ut

7 Discussion

In the previous section we analyzed the behavior of a (β, ω)-preserving EM
which is a model for a (β, ω)-preserving bfpEA. In this section we interpret
these theoretical results to infer qualitative and quantitative aspects about the
behavior of a (β, ω)-preserving bfpEA. Let Qω be a (β, ω)-preserving bfpEA and
let Eω be a (β, ω)-preserving EM that models Qω. We will first focus on the
behavior of Qω when ω = 1. This behavior is shown schematically in (fig. 1).
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〈k3〉

〈k1〉 〈k2〉

Fig. 1. Schematic depiction of the behavior of a (β, 1)-preserving bfpEA

The function β partitions the genotype set into theme classes. A shaded region
within some theme class 〈k〉 depicts a subpopulation of k-themed genotypes
at some time t 5 The initial population of Q1 is comprised of the union of
subpopulations in different theme classes. Some themes may not be present at
all in the initial population of Q1. This is depicted by the empty theme classes
in the figure. The sizes of the subpopulations of Q1 vary from generation to
generation as evolution proceeds. This is depicted as a change in the sizes of
the shaded regions depicting subpopulations. Let n be the fixed total population
size of Q1. For any t ∈ Z+

0 , let F t
k be the total fitness of all the individuals in

some k-themed subpopulation at time t. Then by the theme selection equation
the size of the k-themed sub-population in generation t + 1, denoted by nt+1

k , is
given by nt+1

k ≈ n
F t

kP
k′∈K F t

k′
.

From the theme-thread correspondence equation we can infer that apart
from the change in the size of the subpopulations in each generation (as described
above), the evolution of any k-themed subpopulation proceeds independently of
the evolution of other subpopulations. If R is the representation that is used
by Q1, then we can think of each k-themed subpopulation as evolving within a
separate variable-population-size bfpEA that uses a (β, k)-subrepresentation of
R; let us call this a (β, k)-sub-bfpEA of Q1.

For any theme k and any generation t, the value F t
k can be thought of as

the fitness of the (β, k)-sub-bfpEA in generation t. In each generation t ∈ Z+
0 , the

population size of the (β, k)-sub-bfpEA is given by nt
k. If one thinks of the popu-

lation size of a sub-bfpEA in some generation as the amount of search resources
allocated to its representation in that generation, then in each generation Q1 re-
allocates its search resources amongst the subrepresentations of its sub-bfpEAs
in proportion to the fitness of the populations of the sub-bfpEAs. We call this
behavior Subrepresentation selecting multithreaded evolution (SSME).

5 When interpreting this figure and (fig. 2) the reader should bear in mind that while
subpopulations are depicted as sets they are really multi-sets. We nevertheless use
the size of a shaded area to depict the size of some sub-population of some theme
class.
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Fig. 2. Schematic depiction of the behavior of a (β, ω)-preserving bfpEA when ω ≈ 1

Note that when ω = 1, if some theme k′ is not instantiated by some
genotype of the initial generation of Qω, then k′ will never be present in any of
the genotypes in any subsequent generations. Thus the (β, k′)-subrepresentation
of Qω will never be explored. So, in each generation, Qω will only perform
subrepresentation selection on the subrepresentations that are already present
in the initial generation.

When ω ≈ 1 we say that the bfpEA Qω is mostly-theme-preserving. By
the corollary to theorem 1, the subtransmap selecting multithreaded evolution
equations approximately hold for Eω. Therefore, we infer that Qω approximately
implements subrepresentation selecting multithreaded evolution. The key qual-
itative difference between the SSME behavior of Q1 and the behavior of Qω is
the result of the small number of theme altering mutations in each generation
of Qω. Figuratively speaking, the child genotypes produced by such mutation
“jump over” the theme class partitions as shown in (fig. 2) and land in theme
classes that are different from those of their parents. Thus in each generation of
Qω new themes may be instantiated which were not present in previous genera-
tions. When ω ≈ 1 themes correspond approximately to the subrepresentations
used by sub-bfpEAs, so another way of saying the above is that in each genera-
tion sub-bfpEAs with new subrepresentations may be generated by Qω. As Qω

approximately implements SSME, these new subrepresentations will be subject
to subrepresentation selection in subsequent generations. Since Qω generates
new subrepresentations in addition to approximately performing SSME, we call
its behavior Subrepresentation evolving multithreaded evolution (SEME). Thus
a (β, ω)-preserving bfpEA performs second-order search over the a space of sub-
representations and in each generation exploits promising subrepresentations for
first-order evolutionary search.

8 A Comparison With Schema Theory

We now compare the analytical method and results in this paper with the meth-
ods and results found in other works on schema theory. Schema theorems [4, 5,
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7] define specific subsets of the genotype space and model the flow of individuals
of an evolving population between these subsets. The subsets are defined using
similarity templates called schemata. A genotype that matches a schema is said
to “belong” to it.

When compared to the schema theorems, the theme preservation theorem
makes different assumptions about the Evolutionary Algorithms being modelled:

1. Schema theorems typically assume that variation consists of mutation and
recombination whereas the theme preservation theorem assumes that muta-
tion is the only variation operator that is used.

2. The analysis in each schema theorem is specific to: i) a particular genotypic
data structure (e.g. strings or trees), ii) a particular way of performing re-
combination (e.g. uniform crossover in the case of strings, homologous one
point crossover in the case of trees) and mutation (e.g. Bitflips in strings
with probability 1/l, where l is the length of a string) On the other hand
the theme preservation theorem is not specific to i) a particular genotypic
datastructure, or ii) a particular way of performing mutation (differences in
the genotypic data structure and mutation operator are treated by using a
different genotype set G and different mutation-only transmission function
M)

Also, the way that subsets of the genotype space are defined and the proper-
ties they have differ between the schema theorems and the theme preservation
theorem:

1. Schema theorems use similarity templates (e.g. ∗ ∗ 101 ∗ 1 in the case of
Holland’s schema theorem) to define subsets of the genotype space, whereas
the subsets in the theme preservation theorem are the equivalence classes
induced by a mapping from the genotype set into a theme set.

2. A genotype may belong to more than one schema, i.e. the subsets correspond-
ing to the schemata may overlap. On the other hand, given some theme map
β, a genotype must belong to one and only one β-theme class, i.e. the subsets
are disjoint. Furthermore, the theme preservation theorem requires that the
probability that the mutant of a genotype will stay within the parent’s subset
is a constant ω for all subsets. And, for the theorem to have epistemological
impact, ω must be close to 1.

Because of these differences, comparing the result of the theme preservation
theorem with that of other schema theorems is a little like comparing apples
with oranges, yet at a high level all these theorems ultimately say something
about the flow of an evolving population between subsets of the genotype space,
and it is on these grounds that we make the following comparison. We note that:

1. The theme selection equation which describes the inter-subset flow of the
population in each evolutionary epoch is much more concise than a typical
schema evolution equation. The conciseness of expression in this macroscopic
level equation is achieved by using the same selection operator that is used
in the microscopic level evolution equation (in definition 11). Therefore one’s
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familiarity with the effect of this operator in the microscopic level equation
makes it easier to understand its effect in the macroscopic level equation.

2. The theme - thread correspondence equation gives us an intuitive way to
understand what is going on within each subset. i.e. the intra-subset flows.
It shows that when ω ≈ 1 an approximation of evolution occurs within each
subset. Schema theorems do not give a similar pithy understanding of intra-
subset flows.

Our intent in this section has been to illuminate our analytical method
and results by comparing them with other methods and results. We do not wish
to imply that one approach to analyzing EAs is better than another. As we’ve
noted schema theorems analyze the behaviour of EAs which use a recombination
operator. Thus existing work on schema theorems analyze algorithms that are
more complicated than the ones considered in this work. Note however that our
analysis of simpler systems, and the way in which we define the subsets that are
analyzed, gives us results that are more intuitively understandable and are not
specific to a particular data-structure.
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