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Abstract. Severalof the majortransitionsin evolutionaryhistory, suchasthe symbiogenic
origin of eukaryotedrom prokaryotessharethe featurethat existing entitiesbecamethe
componentf compositeentitiesat a higher level of organisation.This compositionof
pre-adaptedextant entities into a new whole is a fundamentally different source of
variation from the gradual accumulationof small random variations,and it has some
interestingconsequencdsr issuesf evolvability. Intuitively, the pre-adaptatiorof setsof
featuresin reproductivelyindependenspecialistssuggesta form of ‘divide andconquer’
decompositionof the adaptivedomain. Moreover, the compositionsresulting from one
level may becomethe componentsor compgaitions at the nextlevel, thus scalingup the
variationmechanismin this paper,we exploreanddeveloptheseconceptaisinga simple
abstractmodel of symbiotic compositionto examineits impact on evolvability. To
exemplify the adaptivecapacityof the compositionmodel, we employ a scaleinvariant
fitness landscapeexhibiting significant ruggednesst all scales.Whilst innovation by
mutationandby conventionakvolutionaryalgorithmsbecomesncreasinglymoredifficult
as evolution continuesin this landscapeinnovationby compositionis not impededasit
discovers and assembles component entities through successive hierarchical levels.

Keywords: symbiogenesismajor evolutionary transitions, evolutionary computation,

evolutionary algorithms, Symbibgenic Evolutionary Adaptation Model, Hierarchicalif-
andonly-if, (HIFF).

1 Introduction

1.1 The major evolutionary transitions and symbiotic composition

The major evolutionarytransitions(Buss 1987, Maynard Smith & Szathmary1995, Michod
1999) involve the creation of new higherlevel complexesof simpler entities. Summarisedy
Michod for example they include the transitions“from individual genesto networksof genes,
from gene networks to bacterialike cells, from bacterialike cells to eukaryotic cells with
organelles,from cells to multicellular organisms,and from solitary organismsto societies”.
Thereare manygoodreasondo be interestedn the evolutionarytransitions:they challengethe
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Modern Synthesispreoccupatiorwith the individual as the unit of selection,they involve the
adoptionof new modesof transmittinginformation, and they addressfundamentalquestions
aboutindividuality, cooperationfitness,and not least,the origins of life (Buss1987,Maynard
Smith & Szathmary 1995, Michod 1999).

In severalof the major evolutionarytransitions“entities that were capableof independent
replicationbeforethe transitioncanreplicateonly as part of a largerwhole afterit” (Maynard
Smith & Szathmaryl995). Although MaynardSmith and Szathmaryidentify severaltransitions
which do not fit what they describe as “symbiosis followed by compartmentationand
synchronisedreplication”, several of the transitionsdo involve the quite literal joining of
previouslyfreeliving entitiesinto a newwhole. We shall refer to this mechanismas‘symbiotic
composition’,or simply ‘composition’. Well known examplesincludethe origin of eukaryotes
from prokaryotesvia symbiogenesigthe genesisof new specieshroughthe geneticintegration
of symbionts),(Margulis 1993a& 1993b), and the origin of chromosomedrom independent
genes (Maynard Smith & Szathmary 1993).

Composition presents some obvious contrasts with how we normally understandthe
mechanismof neoDarwinist evolution. The ordinary (nonttransitional) view of evolutionary
changeinvolves the accumulationof random variationsin genetic material within a single
lineage, whereasinnovation by composition involves the union of different entities, each
containingrelatively large amountsof geneticmaterial,that are independentlypre-adaptedas
entities in their own right, if not in their symbiotic role. We will use the term ‘accretive
adaptation’to refer to the normal view of evolutionary changeoccurring by accumulating
variations within one lineage.

This paper,andour previousresearch{e.g.Watsonetal. 1998,Watson& Pollack1999b,2000
& 2001b), is directed toward an adaptationalunderstandingof composition: What kind of
adaptationdoes the formation of higherlevel complexesfrom simpler entities afford in an
evolutionary system?Following the conceptionof evolution as a combinatorialoptimisation
processon a fitness landscape(Wright 1967), we seekto understandthe kind of adaptive
domain,the kind of fitnesslandscapefor which compositionis well suited,andto elucidatethe
adaptivepotentialof compositionascontrastedvith accretiveadaptationThe modelwe develop
is anabstractheoreticaimodelof biologicalcompositionandthe major evolutionary transitions,
complementingtherabstact modelssuchasthe algebraiomodelof Nehaniv& Rhodes(2000).
It is alsoanalgorithmicmodelmotivatedby, andcontributingto, the conceptof modularityand
abstractionin computationalartificial evolution methods,i.e. evolutionary computation,(e.qg.
Holland 1975, Mitchell 1996, Spears et al. 1993).

We acknowledgethat the evolutionary transitionsand compositionalmechanismsdo not
necessariljhavean adaptiverole, andthat the notion of an objectivefitnesslandscapendthe
‘problem/solution metaphor are not necessarilyappropriatefor evolutionary processesin
generale.g.seeLewontin2000for discussion)Nonethelessan examinatiorof the potentialfor
adaptive change offered by a biological phenomenon,and a better understandingof the
circumstancesif any, where an adaptiveadvantageas conceivable,are likely to be a useful
componentof our understandingMore specifically, whena phenomenorhasbeeninvolved in
severalmajor innovationsin evolutionaryhistory, we suggestan adaptabnal stanceis one of
those that should be investigated.Since we find in the following models, under certain
circumstances;ompositionaimechanismgan enablethe evolution of complexadaptationghat
are not evolvablevia accretivemechanismsit behoes us to examinetheseconditionsandthe
kind of adaptations for which this is possible.



1.2 Composition and scalable evolvability

Compositionimmediately suggeststwo complementaryconceptsthat impact evolvability: a

scalingup in the ‘unit of selection’,and a scalingup in the ‘unit of variation’. The creationof

higherlevel organizationalunits in the major evolutionarytransitionsis often associatedvith

new units of selection,hencehierarchicalselection,(e.g. Michod 1999). But we want also to

point out thatthe entitiescreatedby a union may createa new higherlevel unit of variation—a

kind of ‘coarsegraining’ for the formation of groupsat the next level of organisationThatis,

sincethe entitiesinvolvedin a compositioneachcontributea numberof featuresyariationin the

spaceof their combinationsconstitutesa higherlevel variation mechanism(than mutational
change),and eachnew entity createsa new unit of variation for subsequentomposition.Put
from the viewpoint of eachentity involved, a new partnerintroducesa large set of features
simultaneouslyMoreover,this is not an entirely arbitrary setof featuresbut a setthat hasbeen
pre-adaptedy paralleladaptationn (semt)independenlineagesThusthe resultsof selectionat

onelevel of organisatiorprovidethe componentgor variationat a higherlevel of organisation.
Our intuition is thereforethat compositionpermitsan adaptivescalingup in the mechanisnof

adaptation.Algorithmically, the unit of variation impacts modularity—the identification of

meaningfulcomponentshatcanbere-usedto makesubsequentariationmore‘informed’,—and
the unit of selectionimpactsdivision of labour—the decompositiorof a complexadaptatiorinto

simpler adaptations such that each lbarevolved by semindependent processes.

We canview the entitiesinvolved in compositionas an abstractionof the featurespaceinto
higherlevel units—thus enablingvariationto searchin the spaceof successfutombinationsof
organisms rather than combinations of the original ‘atomic’ features. Naturally, most
combinationsof organismsdo not make a successfulcomposite—but then, neither do most
mutations,for example.The point is whether combinationsof entities, that are themselves
successfutomhbnationsof featuresare morelikely to producea viable variantthanthe ‘raw’
combinationsof featuresprovidedby mutationalevents.The fact thatthe componenentitiesare
pre-adaptedin separatdineagesprovidesa ‘divide and conquer’treatmentof the featureset.
Intuitively, an examplemight be provided by the notion of a generalistentity, utilising two
different niches,resourcesor habitats,that canbe formed by the compositionof two specialist
entitieseachindependentlhadaptedo one of theseniches,resource®r environmentsThereby,
the problemof beingwell-adaptedo the general environment is divided into the-putiblems of
being well-adaptedto componentenvironmentsThis decompositiorof a probleminto smaller
problemsis know as ‘divide and conquer’(e.g. Cormenet al. 1991); so namedbecauseof the
significantalgorithmicadvantaget offers whenapplicable.Suchdivide andconqueradvantage
is not availableto a processthat optimisessystemsmonolithically andthusis not avaiable to
natural selection when features are adapted within a single unit of selection.

1.3 Models, and paper structure

To illustrate these conceptswe devise an abstractalgorithmic model which we call “The
SymbiogenicEvolutionary AdaptationModel”, or “SEAM”, to invoke the notion of symbiotic
unionor joining. Our intentis to providea modelin which the combinatoricoof compositioncan
be clearly seen,showing a concreteillustration of a mechanismthat scalesup the unit of



variation and enablesa divide-and-conqueralgorithmic advantageTo contrastwith this model
we use the regular Genetic Algorithm, GA, (Holland 1975) as a model of accretive adaptation.

An importantcomplementarypart of our modelis a characterisatiof an adaptivelandscape
to which compositionis well suited. To this end we introduce an adaptivelandscapehat is
‘compositioneasy’ but very difficult for accretiveadaptation.The landscaperesults from a
system of interdependentvariables that have a hierarchically clustered strucure. This
interdependencygtructureproducesa fractal fithesslandscapexhibiting significantruggedness
at all scales.The purposeof usingthis landscapdor our experimentss not to suggesthat all
adaptiveproblemsencounteredn naturehave this structure.Our purposeis to exemplify the
kind of adaptatiornthat is enabledby compositionand contrastthis with that which is possible
underaccretiveadaptation.That said, this kind of scaleinvariant problem structuredoeshave
someinterestingpropeatiesthatare quite generalandpotentiallyrelatedto scaleinvarianceoften
found in natural selbrganised dynamical systems (Bak 1996).

In our experimentsusing our scaleinvariant fithess landscapewe investigatethe ability of
both a mutation only algorithm and the GA to crossfitness saddlesof increasingsize. More
exactly,asadaptationcontinuesandthe distanceto the nextbestoptimumincreasesye would
expectthatadaptatiorby thesemethodswvould becomeancreasinglydifficult. In contrastwe will
useSEAM to investigatewhethercompositionis ableto overcomethe epistasisstructurein the
landscapdy searchingcombinationsof coevolvedentitiesthroughmany hierarchicalevels.On
this class of adaptive landscape,we expect that evolvabiliy under mutation and sexual
recombinationwithin the accretive model of adaptationwill be inherently limited, whereas
innovation by composition offers the possibility of inherently scalable,-epded evolvability.

The remainderof the paperis structued asfollows. In the following sectionwe outline some
related evolvability issuesin both evolutionarybiology and evolutionary computation.These
providea largercontextfor the conceptsntroducedaboveanddetailedin the remaining sections.
In Secton 3 we describethe SymbiogenicEvolutionaryAdaptationModel, asa simple abstract
modelof compositionthatwe useto exploretheideaswe haveintroduced.Section4 notessome
comparisonsbetweenthis model and well known evolutionary computationalgoilithms. In
Section5 we describethe scaleinvariant adaptivelandscapewve will usefor our experiments.
The experimental results are described in Section 6. Section 7 concludes.

2 Related issues in biological and computational models

In this sectionwe outline some related evolvability issuesin both theoretical evolutionary
biology and evolutionary computation. These provide a larger context for the theoretical
concepts introduced above and detailed in the remaining sections of the paper.

2.1 Some related modelsmpacting biological evolvability

Sewell Wright (1931) statedthat “the centralproblemof evolution...is that of a trial anderror
mechanisnby which the locusof a populationmay be carriedacrossa saddlefrom onepeakto
anotherand perhapshigher one.” This conceptionof evolutionary difficulty, and the now
familiar conceptof evolution as a combinatoricoptimisation processon a ruggedlandscape
(Wright 1967), are centralin issuesof evolvability. In keepingwith this view, thereare many
modelsof how evolvability canbe enhancedy increasingthe ability of adaptatiorto escapeor



otherwiseavoidlocal optima—configurationsof featuresvhereno small changen featureswill
produce a fitter variant.

Somemodelssuggesthatlocal optimaarenot as prevalentasmight be expectechaively. For
example heutralnetworks(Huynenetal. 1996)arepathwayghroughgenotypespacethat enable
neutralvariation (Kimura 1983)to arrive at configurationghatare genotypicallycloseto a large
number of different phenotypes.By this means,the number of fitter phenotypesthat are
reachablg(without passingthrough phenotypeghat are lessfit) is increasedwith respectto a
substratewithout such pathways.Extradimensionalbypass(Conrad1990), recognisegha the
numberof featuresan entity exhibitschangesover evolutionarytime, and put crudely, although
an entity might be stuckon alocal optimumin 4-featurespacejt might be ableto movearound
the impasse in the extra ‘degree of freedom’ provided Bfeature space.

Otherissuesmpactingevolvability includethe fact thatalthoughtheremay belocal optimain
phenotype space, small variations in genotype can provide large changesin phenotype.
Sophisticatedontogenicprocessege.g. Waddington1942 provide a complex mapping from
genotypeto phenotypeandthe structureof this mappingis critical to understandindgnow small
randomchangesin genotypemight enablelarge changesn phenotype Exaptation(Gould &
Vrba 1982)refersto caseswherea collection of featuresadaptedor somepurposeis co-opted
for some other purposeor function; with respectto the function of interest,a large set of
phenotypic features may be introduced simultaneously.

Eachof thesemodels/issuetiassomeimpacton the abiity of adaptatiornto ‘tunnel across’,
‘by-pass’,‘jump over’, or otherwisetraversefitness saddlesand escapdocal optima. Someof
them even offer the potential for a mechanismof variation that improves adaptively. For
example,the structureand effect of ontogenicprocessesre subjectto selection,so the large
changesin phenotypethat they facilitate are not arbitrary and could conceivably scaleup
adaptivelyasthey are‘tuned’ by further selection.But, noneof thesemodelsinvolve a scaling
up in the reproductiveunit. The ontogenicmechanismspeutralnetworks,extradimensionsand
exaptedfeaturesoccurwithin singlelineagesanddo notinvolve (in and of themselves¥etsof
featuresbeing adaptedin parallelin different reproductivelineagesand or being subsequently
combinedor assembledogetherinto a new reproductiveunit. Algorithmically, this meansthat
they do not afford any opportunityfor divide and conqueralgorithmic advantageBiologically,
this meanghatthesemodelsapply to adaptationbetweenransitions,not to transitionalchanges
themselves.

Nonetheless,it is quite possible that all of the advantagesand possibilities that these
mechanismffer can be multiplied by the opportunityto composeentitiestogetherduring a
transition. The model of compositionwe presentheredoesnot include thesemechanisms-we
usea directoneto-one map betweengenotypeandphenotypehat doesnot allow the possibility
of neutral networks, or ontogenic processesfor example. However, the model is quite
compatiblewith thesepossibilities—thesenontransitionalissuesare mostly orthogonalto the
possibility of composition,changingthe unit of selection,and divide and conqueralgorithmic
advantage.

2.2 Biological mechanisms relating to compositin

Unlike the abovemechanismsthereis a family of mechanismshat copy, or otherwisere-use,
pre-adaptedeaturesets—e.g.geneduplication(Ohno 1970), horizontalgenetransfer(Mazodier
& Davies1991,Smithetal. 1992),andsexualrecombination. Cledy, these mechanisms involve



variations in higherlevel aggregationsof genetic material (with respectto mutation). And
arguably, to the extent that a gene,or a section of chromosome can be duplicated,or be
propagatedhroughreproductiveevents without the whole chromosomdeingreproducedthese
mechanismslo involve a unit of selectionsmallerthan the individual (Dawkins 1976). If we
acceptatwo-level modelof selectionfor thesemechanisms-the suborganismidevel (e.g.gene
or subsectionof chromosome)and the organismiclevel—then thesemechanismgonstitutea
limited form of composition.That is, the componentsat the organismlevel have beenpre-
adapted in parallel (serandependently and subsequently brought together.

Allopolyploidy (having chromosomesetsfrom different speciesYWerthetal. 1985)is alsoa
form of composition;limited only in the sensethat it usually occursbetweenclosely related
species.

However,thesemechanismslo not provide a clear hierarchicalmodel moving through many
successive levels. Moreover, gene duplication, horizontal genetransfer, and sexual
recombinationalso dependon a specific effect to maintain the coherenceof lower level
componentspr modules—namely, geneticlinkage That s, if the nucleotidesof a genewere
somehowdistributedalongthe chromosomehenthey could not maintaintheir integrity through
sexualrecombinatioreventsthey would not be likely to be copiedasa unit, nor be transferred
horizontallyasa unit. The usefulnes®f modules epresented in sections of chromosome depends
on the correspondenc®f geneticlinkage with epistatic linkage (Watson & Pollack 1999c,
Wagner and Altenberg 1996which must not be taken for granted.

In the work we presenthere we wantedto presentan openended multi-level model where
thereis no a priori definition of differentlevelsof units/modulesandwe did not wantassume
favourablegeneticlinkage. Accordingly, we do not include geneduplication, horizontalgene
transfer,or polyploidy explicitly in our modet—but, asstated we view compositionasa general
form of thesemechanismsPreviouswork hasexploredthe operationof sexualrecombination
with and without the assumptiorof favourablegeneticlinkage (Watsonand Pollack 2000, see
also, Watson 2002). For the purposesof contrast, we include experimentsusing sexual
recombination(without the assumptionof favourable genetic linkage) in our experimental
section.

2.3 Modularity and credit assignment in artificial evolution

Conceptsof modularity are familiar in artificial evolution methods.The notion of ‘building-
blocks—aggregation®f featuresthat form usefulcomponentdor subsequenadaptatior—has

been presentsince the inception of Genetic Algorithms, GAs, (Holland 1975). We will not
attemptto provide a comprehensiveeview here,but we mentionthat thereare many methods

and techniques used in artificial evolution models that address modularity and division of labour.

For example,modularity is addressedmplicitly by the useof variablelengh, movinglocus,
nortlinear, and generativeencodings—for example MessyGA (Goldberget al. 1989),Linkage
learning GA (Harik & Goldberg 1996), Genetic Programming(Koza 1992), and cellular
encoding(Gruaul994).And modularityis addresseéxplicitly in mechanismshat‘encapsulate’
subsetsof featuresfor subsequente-use during the searchprocess—for example,’Automatic
module acquisition’ (Angeline and Pollack, 1993), ‘automatically defined functions’ (Koza
1994), and ‘adaptiverepresentation{Roscal997). The advantageof theseexplicit methodsis
that “the modularizationof representationatomponentsand their protectionfrom mutation



[/internal variation] can be viewed as removing unnecessarydimension[s]from the search
space...” (Angeline and Fatk, 1993).

Methods explicitly addressingthe division of labour include Learning Classifier Systems
(Holland & Reitman1978), CooperativeCoevolution(Potter 1997), and Evolutionary Divide
and Conquer(Roscal997), as well astechniquesembeddedn the modularity methodslisted
above.In all thesemethods,the samequestionre-occurs:How do we evaluatethe value of a
module?We want to promotemodulesbecausehey are useful ‘building-blocks’ eventhough
theymaynot necessarilypevaluable in isolationSince the module is not a complete solution but
a partial solutionit mustbe evaluatedn somecontext—for example anassemblyof modulesIf
it is evaluatedin an assemblyof modulesthen how do we apportionfitnessto the modules
involved? This is known as the ‘credit assignmentproblem’. In genetic algorithms using
crossover,(where the implicit modulesare sectionsof chromosomeand the contextis the
individual), the credit assignmenproblemis manifestin ‘parasites’(Goldberget al. 1989)and
‘hitch-hiking’ (Forrest & Mitchell 1993).

Different methodgakedifferentapproacheso the creditassignmenproblem;for example,n
previouswork we haveusedfithesssharingmethodgo successfullyevolvemodularsolutionsto
GeneticProgrammingproblans (Juille & Pollack1996).In the model presented here, we attempt
to find a principledway to makeselectionover differentsizedentitiesprovidethe characteristics
of modularityanddivision of labour hierarchically and in a principled fashion follag/ifrom the
inspiration of the evolutionary transitions. Some comparisonsbetweenthe Messy GA and
composition are given in (Watson & Pollack 2000, Watson & Pollack 1999c).

Related computational models specifically addressing symbiosis and compositional
mechanismdanclude (Bull 1999a& 1999b,Bull & Fogarty1995).Thesemodelsoffer important
insightsinto compositionalmechanismsand their role in the evolutionarytransitions,and the
subjectof our modelsis closelyalignedwith these Our work alsocontrastswith theseprevious
works in severalrespectswe addresghe serialapplicationof the relevantmechanismshrough
severalhierarchicallevels in a unified model; we place an emphasison the compositionof
lineagesthat are not geneticallyrelated(or similar); we modelthe interactionof morethantwo
lineages;and we do not pre-define the identity of possiblegroups.Dumeur (1995) offers an
algorithmicmodelthatis conceptuallyallied with ours,but of quite a different proceduralstyle.
An additional distinctionfrom previouswork comesfrom our work on characterisinghe classof
adaptivelandscapethat exemplifiesthe adaptivecapacityof compositionalmechanismsThis
landscapeis an important part of our computationalmodel and helps us to undestandthe
potential impact of compositional mechanisms on the evolvability of adaptive processes.

Someadditional,brief comparisonsvith existingevolutionarycomputatiormethodsaregiven
in Section 4, after our composition model is introduced.

3 The Composition model

3.1 Overview of the composition model

In this sectionwe examinea simple abstractionof compositionwhich we call the Symbiogenic
EvolutionaryAdaptationModel or “SEAM”, to invoketheidea of symbiotic unions or joins (see
Watson& Pollack2000). This modelis a populationbasedcomputersimulationsharingsome
characteristicswith Evolutionary Algorithms, (EAs), and in particular, Genetic Algorithms,



(GAs). For example the modelusesa populationof entities,a variationoperatorto createnew
entities, and a ‘fitness function’ to select between variants.

However,thereareimportantdifferences.The entitiesin the populationof an EA areusually
interpretedas variants of the same species,but in SEAM the set of entities representan
ecosytem of different species.This hasimplicationsfor how we perform selection,outlined
below. The variation operatoris the central componentof the model and is basedon an
abstractionof composition. Instead of the usual genetic operatorsof mutation or sexual
recombination the variation operatorin SEAM can be thoughtof asa meansfor joining two
(randomlypicked)entitiesin a symbioticunion. The useof this operatorassertshe possibility of
mechanismshat supportthe creationof a union betweentwo entities,e.g.the formationof cell
membranesypr the instantiationof an endosymbiotiaelationshipithe critical remainingfactoris
to determine whether such a union, if it should occur, would be selected for.

The fitness function is a mappingfrom a set of featurevaluesto some scalarvalue that
representghe ‘adaptive utility’ of a variant. As in most EAs, this fitness value goesthrough
somemanipulationatleastscaling,to determinehe numberof offspring a variant will have. But
in SEAM, the treatmentf fitnessis quite differentfrom normal EAs. The centralquestionthat
our fitnessassessmentseedto answeris whetheran entity is fitter whencomposedvith some
symbiontor whenit is alone.We will assumethat a join betweentwo entities is ‘unstable’if
either of the componententitiesis fitter alone than when joined with the proposedsymbiotic
partner.In this case the compositionwill be dismantledptherwisethe pair will alwaysco-occur
in future and thereby become a new higlegel entity that may participate in subsequent joins.

Of coursethe benefitof a symbioticcompositionis dependenbn whatenvironmentt is in, or
whatalternativeenvironmentsachcomponengentity might occupy.Accordingly,a fundamental
aspectof the modelmustbe that the fithessof an entity changesn different environmentsand
we needto assesshe fitnessof an entity, not in isolation,but in some‘environmentalcontext’.
For the purposesof our model, we will not consideradaptationto staticenvironmentafactors
but ratherfocus on the interactionwith the biotic environmentprovided by other coevolving
entities,sinceit is changesn their biotic associationsif any, thatarethe subjectof interest.In
short,the environmentatontextswill beformedfrom transientgroupsof otherindividuals in the
ecosystem.The ‘overall fithess’ of an entity will then be some function of many ‘context
sensitive’ fitness measures.

However, determiningsuch an overall fitnesswill require knowledgeof the ‘weighting’ of
eachcontextfor eachentity, (for example,the probability with which eachentity may occupy
eachenvironment).Suchweightingsare the effect of many complexecosystenfactorsthatare
beyondthe scopeof what we want to model here. Noneteless,we make someconservative
simplificationsthat, in somecasesallow the determinationof fithess superiorityevenwithout
the knowledgeof environmentalweightings.Our method borrows ideasfrom multi-objective
optimisation (e.g. Fonsecaand Fleming 1995), and particularly the concept of ‘Pareto
dominance’ which is specificallydevelopedor determiningsuperioritywherethe weighting of
a numberof objectivesis unknown.This enablesusto determinethe preferencdor a symbiotic
join in away that is fundamentallysensitiveto environmentatontext,yet we cando this usinga

' Therearetwo complementaryiews concerninghe mechanismef the majorevolutionarytransitions:a) organismsooperate

becausehey have beenencapsulateddy somemechanisminto a single reproductiveunit (e.g. co-dispersal(Frank 1997),
sharedgenetictransmissiormechanismgDawkins 1976)), b) orgarisms becomeencapsulateds a single reproductiveunit
becausehis is a canalisation(Waddington1942) of an existing cooperativerelationship.In a sensepur modelfollows the
latter view since entities do not have an opportunity to change their behafteyencapsulatiorBut the hypotheticapay-off
matriceswe will introducecould be conditionedon the effectsof co-dispersalor co-transmissionfor example Accordingly,
the distinction is not essential in an abstract model such as ours.



simple and abstractmodel that doesnot explicitly contain complex factors of environmental
structure.

In overview,the compositionmodel, SEAM, thatwe will usein our experimentsdevelopsas
follows. The ecosystenis initialised with manydifferentsmall entities.Pairsof entitiesarethen
pickedat randomto seeif they might form a stablesymbioticjoin. If the overallfithessof either
entity alonecould be, dependenbn environmentatontexts greaterthanthe fitnessof the entity
with the proposedsymbiotic partnerthen the compositionis deemeadunstableand the original
entitiesarereturnedto the ecosystemOtherwisethe compositionis deemedstableandthe two
ertities alwaysco-occurtogethetin future. The process of building and selecting compositions of
entities is repeated, eventually building larger and larger composite entities.

Threemain featuresof SEAM are depictedin Figure 1. Frames(a) through(c) in the figure
looselycorrespondo variation,evaluationandselection respectively Theseprocessexutlined
in the figure, are detailed in the subsequent subsections.
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a) New entities are created by joining b) The fitness of an entity is depender ¢) An entity is placed in many contex
two existing entities tagther. on its environmental context. to test the stability of a new join.

Figure 1: A caricatureof processesn SEAM. a) New entitiesare createdrrom the composition
or joining of two randomlyselectedextantentities(Section3.2, Figure2). b) Thefitnessof any
entity (possiblythe resultof a previousjoin) hasdependenciewith its environmentakontext,
i.e. arandomselectionof otherentitiesfrom the ecosysten{Section3.4, Figures3 & 4).c) The
new pairing is subjectto many suchcontexts.If thereis someenvironmentof otherentitiesin

which eithercomponenbf thejoin is fitter individually thanwhenit is with its proposedartner,
then the join is deemedunstableand is dismantled.This follows the assumptionthat the
partnershipmustbe in the ‘selfish’ interestof the partnersinvolved. In our implementationthe
stability of a proposedoin is testedin manycontextsandis immediatelyundoneif foundto be
unstable This modelsthe assumptiorthatcompetitionbetweerjoined andnonjoined variants of
an entity occurs rapidly such that only reliably successfuljoins persistlong enoughto be
involvedin a subsequenbin (Section3.3, Eg. 3). A join that persistshrough(c) is treatedasa
new entity that may participate in further joins as the cycle of the model repeats.



3.2 Entities and their composition

SEAM is anabstractepresentationf an ecosystenincorporatingmanydifferententities.These
entitiesmay be interpretedasgeneshpacterialcells,morecomplexcells, or any otherhigher level
of organizatior—theintentis to modeltransitionsbetweertheselevds in anintegratednodelof
‘entities’. We will usethe word ‘species’to refer to typesof entity at any level. Entities are
representednly by their featuresvalues andfor now, speciesaresimply the setof entitieswith
identical feature values. These featuresmay be interpretedas genes,as phenotypicfeatures
correspondingo genes,or as higherlevel featuresof an organismsuchasresourceusageor a
behaviouralstrategy.In generalthey are the setof characteristicghat affect the fithessof an
entity andthe fitnesssensitiveinteractionsof the entity with its environmentand otherentities.
Our modelabstractsawayall populationdynamicswithin a speciesandthereforethe ecosystem
will only incorporate one representative entity of eadtEs.

The basisof our compositionmodelwill be thata compositeis createdfrom the joining of
featuresfrom two different speciesof entity. Accordingly, it is necessaryhat different entities
will specifydifferentsubset®f featureqnot just differentvaluesof the samesetof features).To
providea simpleexamplelet eachfeaturetakeoneof two values,’0” or “1”, andlet thefeatures
be identified by an index, F.. Thenone speciesmight specify featuresF.=0, F.=0, F,=1, anda
secondspeciesnight specifyF =1, F=0, F, =1, F,.=0. Thentheir join may create the new species
with features =1, F=0, F=0, F=0, F =1, F=1, F=0.

We will usea largefinite setof possiblefeaturesfor simplicity in the implementatiorof the
model? but the numberof featurescould beflexible in alternatémplementationsThe numberof
featuresspecifiedby any one entity may be anythingfrom oneto the full set.In this way it is
simpleto write the specificationof a speciesisingafixed lengthstring. For exampleworkingin
a 16-featurespacewe may write the two entitiesgivenin the exampleaboveasA andB in the
left of Figure 2 below, and their composition may be writteA-+B.

The ‘null features’,“- ", in this representatiorare ‘placeholders’for featuresthat are not
(currently) specifiedby an entity. We will referto the ‘size’ of an entity to meanthe numberof
nontnull features—for example,the entities used above have sizes 3, 4 and 7, respectively.
Figure 2 also illustrates how we will deaith conflicting specifications when they arise.

2

Note thatin the GA individuals also generallyusea finite setof binary features,'genes’, but unlike the entitiesin SEAM,
individualsin the GA mustgenerallyspecifya valuefor everypossiblegene.This is naturalfor amodelof evolutionwithin a
singlelineagewhere every individual has basically the same features but varies in the values of these features. The ‘null’ value
usedin the implementationof SEAM, detailedshortly, cannotreasonablybe characteriseds a third allele sinceit is not
heritablein the same way as nonll values (see Figure 2).
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A --0---0----1---- A ----1----00-1--
B: 1------- 01----0- B: --1-0---0-1----

A+B: 1-0---0-01-1--0- A+B:  --1-1---000-1--

Figure 2: ‘Symbiotic composition’(anabstractiorof Figurel, (a)). Left) Compositionof
two variablesizeentities,A andB, producesa compositeC, thatis twice the size of the
donorentitieswith the union of their featuresHerewe representinspecifiedfeaturesby
“-”. The compositeis createdby taking specified(i.e. non-null) featuresfrom either
donorwhereavailable.Right) Whereconflicts in specifiedfeaturesoccurwe resolveall
conflicts in favour of one donor, e.g. the first.

Algebraically,we definethe compositionof two entitiesA andB, asthe superpogion of A on
B, below. A=(A_A,,...A), is the entity where feature F, takes value A. S(A,B) is the
superpositiorof entity A on entity B, ands(a,b)is the superpositiorof two individual feature
values, as follows:

S(AB)= S(AA,...A)(B,B,.....B)) = (S(A,B).S(A,B),...S(A,B)), EqQ.L.

a, if az null,
where, s(a, b)  p, otherwise.

This compositionwill be the only mechanisnof variationin our model. The intentis thatthe
modelwill startfrom ‘atomic’, i.e. singlefeature entitiesandcomposehemtogetherinto larger
compositesand composethesetogether,and so on. When small entities are composedwith
relativelylargeentities,their effectis like singlefeaturemutations put asentitiesbecomdarger,
their composition enables variat®that scaleip with their size.

Note that the way we use speciesin this model has no implication of restricting possible
unionsbasedon type—in principle, new entitiesmay be createdoy the compositionof any two
existing entities regardless of theiesfes, i.e. regardless of the features they represent.

3.3 ‘Pareto dominance’ to determine whether a symbiotic composition is preferred

Having defined a variation operatorthat definesa join of two entities,we needto determine
whethersucha join would be adaptive.Our basicassumptions that the symbioticrelationship
mustbein the ‘selfish’ interestof boththe componenentitiesinvolved. Thatis, if thefitnessof
either componententity is greaterwithout the proposedpartnerthanit is with the propcsed
partnerthen the compositewill not be selectedfor. If, on the other hand,the fitness of both
componenentitiesis greaterwhenthey co-occurthenthe relationshipis deemedstableandwill
persist.However thefitnessof any entity is dependenbn its environmentatontext;possibly,in
one environmentan entity may be fitter when co-occurringwith the proposedsymbiont,andin
anothercontextthe symbiosismay depreciatats fithess. Thuswhethera symbioticrelationship
is preferred or not depesan what environmental contexts are available.

For our purposesthe setof possibleenvironmentatontextsis well defined:anenvironmental
contextis a completesetof featuregin which somepartially specifiedentity, which may be the
result of manyoins, can be assessed). See Figure 3.

11



---0-11---110--- x, an entity specifies a partial set of feature values.
0110101100010011 O, an ‘environmental context’ is a complete set of feature values.
0110111100110011 9S(x,0), the entityx superimposed on tlentexto.

Figure 3: A partially specified entity must be assessed in a context.

We assumethat the overall fithess of the entity will be a sum of its fithess over different
environmentatontextsweightedby the frequencywith which eachenvironmenis encountered.
But, we would not generallysupposeéhatthe frequenciesith which differentenvironmentsare
encounteredy onetype of entity would be the sameasthe frequenciegelevantto a different
type of entity. Thatis, we imaginethatdifferentspecieshavedifferent distributions over possible
environmentsLet us assumehat we havea measureof the ‘context sensitivefitness’, csf(x,0),
of anentity, X, in any given environmentatontext,8, andthatthe overall fithessof the entity x,
will be F(x) which is the sumof its fitnessover all environmentsveightedby the frequencyof
that environment for that species, as below.

= Eq.2.
(92 2, e PO “

where A @, p) = 0 is the weighting of the environmental cont@xtor entity p.

Now, whethera symbioticrelationshipis preferredor not dependon therelativeweightingof
eachcontextto eachentity involved, and many factors could influence this. For example,a
biaseddistributionover environmentatontextsmay be ‘inherited’ by virtue of the collocationof
parentsand offspring, or affected by the behaviouralmigration of organismsduring their
lifetime, or the selective displacementof one speciesby anotherin short term population
dynamics.We did not wish to introducesuchfactorsand accompanyingassumptionsnto our
model. Fortunately the conceptof Paretodominances specifically designedor applicationin
caseswhere the relative importanceof a numberof factorsis unknown (e.g. see Fonseca&
Flemming 1995). Put simply, this concept statesintuitively that, even when the relative
weighting of dimensionds not known, the overall superiorityof one candidatewith respectto
anothercanbe confirmedin the casethatit is nonworsein all dimensionsandbetterin at least
one. More exactly X Pareto dominateg is written ‘x >>y’, and:

X>>y < (00 : csf(x,0) = csf(y,0) AND [B : csf(x,8) > csf(y,0).
or equivalently, given that andy are different in at least one dimension:

X>>y « 10 : csf(y,0) > csf(x,0).

In caseswhere thereis some® suchthat csf(x,0) > csf(y,8) and someother 8 such that
csf(x,0) < csf(y,0), we saythatx andy arenonsorted And in caseswherelX: X >>y we say that
y is dominatedelsey is nonrdominated For our ecologicaldomain,thesesimplerulesareeasily
interpreted.In the casewherex is betterin someenvironmentghany, andy is betterin some
environmentghan x, thenwe do not know which is fitter overall unlesswe know the relative
weighting of the environmentdor eachentity. But, if x is alwaysfitter (or at leastasfit as)y,
thenregardlesof the weightingsof the environmentdor eachentity, we know that the overall
fitness ofx is greater than that gf(assuming andy are different in at least one dimension).
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This pair-wise comparisorof two entitiesovera numberof contextswill be usedto determine
whethera symbioticjoin producesa stablecompositelf we write the compositionof entitiesa
andb asa+b, then,usingthe notionof Paretodominancea+b is stableiff a+b >> a, anda+b >>
b. In other wordsa+b is unstable if there is any context in which eita@r b is fitter thana+b.

i.e. stable(ath, a, b) = atb >>a AND at+b >> Db,
i.e.unstable(at+b, a, b) < [BOContexts: (csf(a,0) > csf(atb,0) ORcsf(b,0))> csf(a+b,0))
whereContexts is a set of complete feature specifications.

We should note that there is a subtle distinction between‘the fitness of an entity in an
environment’and ‘the fitnessof the entity and environmenttogether’i.e. csf(x,8) # f(S(x,0)).
However,our methodprecludeghe needto separatehe formerfrom the latter becausehe pair-
wise comparisorof two entitiesin the sameenvironmentatontextimplicitly ‘differencesaway’
the contributionof the environment.Thatis, csf(x,0) > csf(y,0) = (S(x,0)) > f(S(y,0)), where
f(w) is the objectivefitnessof the completefeaturesetw asgiven by the fitnessfunction. This
assumeghat althoughwe can only measurethe fithess of a completefeature specification
(organismandenvironmentogether)we candeterminethe informationwe needby differencing
away the fithesscontributionscoming from the environmentoy including themin both sidesof
the inequality.

Thus our condition of instability becomes:

unstable(a+b, a, b) = [BOContexts: (f(S(a,0)) > f(S(a+b,0)) OR f(S(b,8))> f(S(a+b,0)))

Eq.3.

Equation 3 becomes our abstraction for Figure 1 (c).
3.4 Building environmental contexts

In our model, the environmentalcontexts,used in determining Pareto dominanceand the
stability of a proposedcomposition, will be formed entirely from other membersof the
ecosystem.The intent here is that the assessmentdf a new compositioninvolves selecting
betweerbeingin permanentassociatiorwith someparticularmemberof the ecosystenor being
in transientassociationwith membersof the ecosystem.f we were to employ the naive
alternative,selectingbetweenbeing in permanentssociatiorwith someparticularmemberof
the ecosystenor remainingin entirely randomenvironmentakontexts,thenit would be likely
that many more proposedassociationsvould be preferred. This would result in many sub
optimal associationsAdditionally, if entitiesare evaluatedn transientgroupsof other entities
thenthereis the potentialthatthey may becomeco-adaptedto one-anotherandtherebyprimed’
to makesuccessfupermanenjoins by composition.Figure 4 illustrateshow to build a context
from a randomly selected set of entities.
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a: --0---1

b: 01------
(o -0 0- -
d: 1-0-
e ------ 10
f: ---0-00-

Resul t ant cont ext 01001010

Figure 4: Building a contextfrom otherentities,(anabstractiorfor Figure1 (b)). In this
example,six entitiesa throughf, are neededo completea fully -specifiedfeatureset of
eight features Wherespecifiedfeaturesconflict, the specificationsof the topmostentity
take precedence, as in Figure 2.

Algebraically,we definea context,usingthe recursivefunction S, from anorderedsetof n>2
entities X, X,,... X , as follows:

S(X,, S*(X,,... X)), ifn>2,

SH( Xy Xyreen X)) :{ S(X,, X)), otherwise. Eq.4.
whereS(X,, X,) is the superposition of two entities as per Eq.1 above.
Somecontextsmay requiremore or fewer entitiesto provide a fully -specifiedfeatureset. In

principle, we may useall entitiesof the ecosystemin randomorder, to build a context—but,
afterthe contextis fully -specified,additionalentitieswill haveno effect. This allows usto write

a context as S*(E), where E is all members of the ecosystemin random order.
Implementationally, we ay simply add entities until a fulgpecified set is obtained.

3.5 The Symbiogenic Evolutionary Adaptation Model (SEAM)

We may now put togetherthe componentsve haveintroducedaboveto provide a complete
model. To summarise, the model includes the follgwWeatures:

» Variable size entities and a variation operator based on composition.
» Building environmental contexts from otheradapting entities in the ecosystem.

» Testing (in)stability of compaositions by testing for Pareto dominance of the
composition @er the component entities.

Although eachof thesefeaturesis conceptuallysomewhatinvolved, the overall simulation
model is not that complicated. Figure 5 overviews the operation of SEAM.
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« Initialise ecosystem, E, to random, sinégature, entitie§’
* Repeat untistopping condition
- Remove two entities at random from the ecosystean& b.
- Produceat+b=S(a,b), using composition (see Eq.1).
- If unstable(atb, a, b) returna andb to ecosystem, else addb to ecosystem.

where unstable(athb, a, b) <
[BOContexts: (f(S(a,0)) > f(S(at+b,0)) ORf(S(b,0))> f(S(a+b,0)))
where Contexts is a randomset of contextseachbuilt by composingtogethe

other members of thaiorent ecosystem, E, usi®j(E) (see Egs. 3 & 4).

@ . . . , .
Initialisation needsto completelycoverthe setof singlefeature’atoms’ sothatall valuesfor all featuresareavailable

in the ecosystem.

Figure 5: Pseudocode for a simple implementattgrSEAM.

4 Comparisons of SEAM with Genetic Algorithms

4.1 Comparison of Pareto dominance with selection in Genetic Algorithms

The use of Paretodominancein SEAM explicitly respectsthe multi-dimensionalnature of
fitness: That is, the fitness of an entity is different in different environments,and each
environmentatontextprovidesa dimensiorof its fithess.In a multi-dimensionaliew of fitness
we immediatelylose the notion of an absolute‘best’ individual—'best’ is undefinedwithout
specifyinga contex, i.e. oneindividual might be the bestin somecontext,andsomeothermay
be bestin someothercontext.Interestingly,we may insteadusethe notion of a Paretooptimal
set (e.g. seeFonseca& Fleming 1995) of individuals which are optimal in the sensethat no
individual in the setcanbe improvedin any contextwithout necessarilypeingdegradedn some
other context.

In contrast,selectionin the simple GA assumesa onedimensionalfithess metric against

which all entitieswill be comparedThe usualmethodof dealingwith a contextsensitivefitness
measurds to averagets performanceover a numberof samplecontexts. But, thisimmediately

3

The notion of 'schemdfitness'in geneticalgorithmtheory is the averagefitnessof a partial specificationover all possible
contexts andwhenthe fitnessof anindividual is dependenbn coevolvingindividuals,asin coevolvedplayersof agame,an
overall fitness is usually acquired from an average score against many opponents (see Watson & Pollack 2001).
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collapseghe multi-dimensionainformationbackto a singledimensioni.e. ‘how fit is the entity
on averagé Repeatedselectionin a single dimensionof fitness hasthe consequencéhat the
populationwill tendto convergeto the variantsof the ‘beston averageindividual found. Thusit
is not surprisingthatthe problemof maintainingdiversity in EAs and prematureconvergencef
the population is ubiquitous (e.g. Mahfoud 1995).

SinceSEAM utilisesa multi-dimensionatreatmenbf fitness,andacceptsa partial orderingof
the entities,it canapply useful selectionto convergetoward the Paretosetwithout converging
immediately to a single type. By using Paretodominationover a numberof contextsas a
selectioncriteria, ratherthan an equally weightedsum of fithessesover a numberof contexts,
SEAM providesexactlythe balanceof competitionand coexisencethat we werelooking for to
maintain an ecosystenof complementaryspecialistswhile still permitting selectionfor good
joins in a principled manner.

4.2 Comparison of ecosystem contexts with evaluation in Genetic Algorithms

In the MessyGA, (Goldberget al. 1989), partially specifiedindividuals are evaluatedwith the
useof a‘template’havingtherole of the contextin SEAM. Goldbergetal. correctlysuggesthat
‘locally optimisedtemplates’areusefulin revealingthe epistaticinteractionsof a patial feature
set,andthat a sampleof randomtemplatesvould be problematicbecausea) they would not be
likely to encounterall the importantepistaticinteractionswith featuresof the environment(the
requirednumberof templates/contexts exponentl in the numberof unspecifiedeatures)and
b) the ‘signal to noiseratio’ is low in templatedcontextmeasuregmostfitnessdifferentiation
would come from the ‘background noise’ of the template).

The useof otherentitiesto provide contextsin SEAM is animportantheuristicfor reducing
the numberof contextswe needto sample.The entities that are usedfor building contexts
include somethat are aboutthe samesize asthe entitiesbeingtestedandtherebythey havethe
potential to provide template that are optimisedto an appropriatelevel at all stagesof the
processThususingothermembersof the ecosystento build contextsis animportantpartof the
scalablemechanisnof SEAM. Theissuesof backgroundhoiseareavoidedin our methodsince
assessment is carried out in pairwise comparisons of entities over the same set of contexts.

The use of group evaluationin SEAM is similar to the use of a ‘shareddomainmodel’ in
‘cooperativecoevolution’ (Potter 1997). However,cooperativecoevolutionis essentiallylike a
single level of the problem decomposition used in SEAM.

5 A scaleinvariant fithess landscape

A properaccountof the evolutionary adaptationof an entity must fundamentallyinvolve a
descriptionof the structureand natureof the interdependencyof the variablesthat affect its
survival. It must be stated which variables, which genes, environmental properties, and
characteristicof other organismsetc., are dependenbn which other variables.Although it is
difficult to seehow we might attemptto investigatethis structurein a specificcase perhapst is
possibleto give some general qualitative descriptionof the interdependencystructure. For
example,we might supposethat the dependencymatrix is essentiallyrandomand hopefully
sparse,as in N-K landscapegKauffman 1993). In this section,we describea dependency
structurethat is more specificand which makesa significantdifferenceto how adaptatiormay
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take place.Specifically, the interdependencgtructureis hierarchicallyclusteredin groups,and
subgroupsof variables,throughmany levels. This structureis closely relatedto the ideasof
Simon(1969)on ‘nearly decomposablsystems’ The resultingfitnesslandscapexemplifiesthe
adaptivepotentialof the compositionmodel. Of interestto issuesof evolvability is the fact that
this landscapeis scaleinvariant, in the sensethat it has fithess saddlesat all scales,or
resolutions, resulting from its hierarchical construction.

5.1 Two-feature epistasis

Ruggednessn a fitnesslandscapeis introducedby the frustration of adaptivefeatures,or
epistasiswhenreferringto the interdependencef genes- thatis, it occurswhenthe ‘selective
value’ of one featureis dependenbn the configurationof other features.Fithesssadlles are
createdbetweenlocal optima. The simplestillustration is providedby a model of two features,
eachwith two possiblediscretestates,a and b, creatingfour possibleconfigurations:F,a/Fa,
F.a/Eb, Fb/Fa, Fb/Eb. Table 1, below, gives four exemplarycasesfor selectivevalues,or
fithessesfor thesefour combinationsThe overlayedarrowsin eachcaseshowpossiblepathsof
adaptation that improve in fithess by changing one feature at a time.

Case 1l Case 2 Case 3 Case 4 Case 4b

Fa| Fb Fa| Fb Fa|Fb Fa| Fb Fa| Fb

Falq 3] 1 3] |1 4| |3 2| |1 0
™ ™ 4*} £

F.b 2LJ4 ZLJS 2%3 1|_ 4 Ol_’vl

Table 1: Example fitness contributions for combinations of two features.

Casel showsno epistasisthe differencein selectivevalue betweenF,a andF,b is the same
regardlesof the value of F,; andthe differencein selectivevalue betweenF,a andF,b is the
sameregardles®f thevalueof F,. Case2?, 3 and4 eachshowsomeepistasidut with different
effects.In Case2, althoughthe landscapds not planar,the possibleroutesof singlefeature
variationarethe sameasin Casel, andthelandscapestill only hasoneoptimum.In Case3, the
preferencen selectivevaluebetweenF aandF,b is reverseddependingon the valueof F,. This
forcesadapationinto differentroutesthroughthe landscapebut thereis still only oneoptimum.
Only in Case4, wherepreferencan selectivevalue betweenF,a andF,b is reverseddepending
on the value of F,, and the preferencein selective value betweenF,a and F,b is reversed
dependingon the value of F,, doesepistasiscreatetwo optima and a resultantfitness saddle.
Changingfrom FaFa to FbFb without going through a lower fitness configurationrequires
changingtwo featuresat once.Lewontin (2000, p84) identifiesthis sameproblematiccase(for
two diploid loci) in a concretebiological example.Accordingly, this form of epistasigrovides
the basecasefor the landscapeve will use,but for the sakeof further simplification, we make
the fitness values symmetric (Case4b), so the changein the sign of preferenceis retained
without a change in magnitude, and the resultant local optima have equal value.
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5.2 Scalingup recursively

Having establishedan appropriatetwo-featureepistasisnodel, we needan approprate way to
extendit to describeepistasishetweena largernumberof featuresin particular,we wantto re-
usethe samestructureat a higherlevel so asto createthe samekind of epistasidetweensetsof
featuresaswe haveherebetweenrsinglefeatues;in this way, we cancreatea principledmethod
for producingfitnesssaddlesof largerscalesOur approachs to describethe interactionof four
features, F,, F,, F,, usingtheinteractionof F, with F, in one pair, as above, the interaction of F
and F, as a secondpair similarly, and then, at a higher level of abstraction,describethe
interactionof thesetwo pairsin the same fashion. To do this abstraction we treat the two possible
endstatesof the F /F, subsystemi.e. its two local optima (labelledc andd, in Table2), astwo
discretestatesof an ‘emergentvariable’, or ‘meta-feature’,MF,. Similarly, the two possibleend
statesof the F/F, subsysten{e andf) form two statesfor MF,. If the original, ‘atomic’ features
are interpretedas low-level featuresof an entity, then a metafeaturemay be interpretedas a
higherlevel phenotypicfeature of an entity, or some higherlevel property of an entity that
determines its interaction with other entities and/or its environment.

In this manne we may describethe interactionof the two subsystemasthe additionalfitness
contributionsresultingfrom the epistasisof MF, andMF,. Sinceeachmetafeatureincludestwo
‘atomic’ features,we double the fitness contributionsin the inter-group interaction. Table 2
illustrates.

F/F, FJF, MF /MF,
Fa | Fb Fa | Fb MF,e | MFEf
1 0 1 0 2 0
Fa C Fa e MF.c
Y e e
Eb d F.b f MF,d
1 0 1 0 1 0 2

Table 2: Abstractingtheinteractionof two pairsof features, ¥ F, and E/F,,
into the interaction ofwo ‘metafeatures’ ME/MF.,.

The fitness landscapeaesulting from this interactionat the bottom level, togetherwith the
interactionof pairsat the abstractedevel, producedour optimaaltogetherUsinga=0andb=1,
theseare 0000 and 1111, which are equally preferredoptima, and the local optima 0011 and
1100, which are equally preferred but less so. All other configurations are not local optima.

Naturally, we can take the two bestpreferredconfigurationsfrom the F,F,F.F, systemand
describea similar interactionwith anF.,F,F.F, systemandsoon. Equationl below,describes the
fitness of a string of bits (correspondingto binary feature states, as above) using this
construction. This function, which we call Hierarchical If-andOnly-If (HIFF), was first
introducedin (seeWatsonet al. 1998) asa building-block testfunction for geneticalgorithms;
specifically,providing analternativeto functionssuchas‘The RoyalRoads’(Forrest& Mitchell
1993) and ‘N-K landscapes(Kauffman 1993).In contras to Royal Roads,HIFF hasdifficult
epistasidoetweerblocksat all levelsin the hierarchy,andin contrastto the N-K landscapeshe
epistatic structure of HIFF is modular.
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o 1, if [B|=1,
FB) =1 [Bl+F(B)+F(B) if |B>Land(i:b=0 ORTi:b=1)
H F(B) +F(B), otherwise. Eq.5

whereB is a setof features(b,,b,,...4), |B| is the sizeof the set=k,b, is thei" element
of B, B, and B, arethe left andright subsetsf B, i.e. B =(b,,...h,,), B.=(b,,.,---0)-

The lengthof the string evaluatedmustequal2’ wherep is aninteger(the numberof

hierarchical levels).

5.3 The resultant landscape

A 128featurelandscapeausing HIFF (asusedin our experimentshas2*=10" local optima (for
adaptatiorthat can changeone featureat a time) (Watson2001), only two of which are global
optima.If anadaptivemechanisntanjump fithesssaddlesby changingtwo featuresat onceit
still has2* local optima, and so on. To guaranteehat an algorithm can escaperom any local
optimumto a postion of higherfitnessrequiresa variationmechanisnthat canchangeN/2=64
featuresat once.Thus,an algorithmusingonly mutationcannotbe guaranteedo succeedn less
thantime exponentiain the numberof featuregWatson2001).A particularsecton throughthe
fitnesslandscapeas shownin Figure6—the sectionrunsfrom oneglobal optimumto the otherat
the oppositecornerof the hyperspacg¢seeWatsonand Pollack1999a).As is clearly seenin the
fractal natureof the curvein Figure 6, the locd optima createfitness saddlesthat are scale
invariant in structure: that is, the nature of the ruggedness is the same at many successive scales.

450

400

fitness

350

1 1 1 1
o] 10 20 30 40 50 60
(all-zeros) number of leading ones (all-ones)

300 1 1 1

Figure 6: A sectionthrougha 64-featureHIFF landscapeThe two global optima
(fitness 448 for 64eature landscape) are seen at opposite extremes of the space.

The modularstructureof the HIFF landscapemakesthe problemrecursivelydecomposable.
For example a 128featureproblemis composef two interacting64-featureproblems eachof
which hastwo optima. If both of theseoptimacanbefoundfor both of thesesubproblemshena
globaloptimumwill befoundin 2 of their 4 possiblecombinationsThus,if this decomposition
is known, thenthe searchspacethat mustbe covereds at most2* + 2* + 4 = 2* configurations.
Comparedwith the original 2'*° configuration space,even this two-level decompositionis a
considerablesaving.In addition,eachsize 64 problemmay be recursivelydecomposedgiving a
further reductionof the searchspace.ln (Watson2001) we describehow an algorithm having
somebiasto exploit the decompositiorstructure(using the adjacencyof featureson the string)
can solve HIFF in polynomial time. Here however,we are interestedin the casewhere the
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decompositionstructureis not known to the adaptivemechanismWe call this the ‘Shuffled-
HIFF' landscapdWatsonet al. 1998)becausehis preferentiabiasis preventedy randomlyre-
orderingthe positionof featureson the string suchthattheir geneticlinkagedoesnot correspnd
to their epistatic structure (see Watson & Pollack 1999c).

In summarythis landscapexhibitslocal optimaat all scaleswhich makesit very challenging
to accretive adaptation,and fundamentalto the issues of saddlecrossing and scalable
evolvablity. Yet, it is amenabldo a ‘divide andconquer’approachf the decompositiorof the
problem can be discovered and -sdtutions can be manipulated and recombined appropriately.

5.4 Dissolving the distinction between epistasis and muiplayer evolutionary games

An alternativeinterpretationof the two-featureepistasisnodelaboveis obtainedby viewing the
two different featuresastwo different playersin a symmetrictwo-playergame,andthe feature
valuesastheir possiblestrategiesin this view, the fithesscontributionsbecomethe valuesof a
pay-off matrix andthe salientcharacteristiof Case4 is thatthe optimal strategyfor playerone
is dependenbn the behaviourof playertwo, andvice versa.The particularmatrix we arriveatin
Casedb is analogougo the ‘mutual benefit’ matrix from (MaynardSmith and Szathmary1995,
p.262), but herethereis not yet any distinction betweenthe two attractorsof the systemi.e.
which is the ‘defect’ and which is the ‘cooperate’ strategy, because we ts=igequal value.

As we recursively re-apply the two-feature model we apply the two-player matrix in a
recursivefashionto definea four-playergame.Note thatnow, in the contextof FaFa, F.bFb is
a ‘defect/defect’resultfor players3 and 4, becauset is in their selfishinterestfor eachplayer
not to changefrom this strategy but if they both changedo F,aF,a, this would providea higher
payoff. Conversely, in the context of FbFb, FaFa is ‘defect/defect’ and FbFb is
‘cooperate/cooperatefn otherwords,whethera strategyprovidesmutualbenefitor not depends
on the context in which the game is played.

ThusHIFF describes hierarchicalcooperate/defegame.The natureof the pay-off valuesis
suchthat maximisingthe payoff for all (e.g.128) playersis achievedwhen two-subgroupgof
64) playersare compatible.Other attractorsin the evolutionary game occur when particular
subsetof playersare compatibleintra-group but not inter-group.Accordingly, optimising HIFF
requiresthe inducion of hierarchicalcooperationThe pay-off valuesat everylevel of resolution
helpto identify good combinationsof strategies—but, which of the two optimaat everylevel is
bestdoesnot becomeclear until the contextof other playersis stabilised.HIFF deliberately
dissolvesthe distinction betweenepistasis(the interdependencyf geneswithin anindividual)
andmulti-playerevolutionarygamegthe interdependencygf featuresof oneentity with thoseof
another) as is required from a model incorgagathanges in the unit of selection.

HIFF may be contrastedvith previousmodelsof landscapesdesignedo modeltheinteraction
of coevolving species,for example,the NKC modelsof Kauffman (1993), as usedin (Bull
1999). First, whereasthe NKC model representsa modular landscapewith a single level of
modular organisation(composedof two coupled semiindependentiandscapesor severalin
‘NKCS’ models),HIFF depictsa hierarchicallymodularlandscapelefinedrecursively.Second,
whereasthe NKC model (like other N-K models)usesrandomepistaticinteractionsbetween
variables HIFF usesa specific,anddifficult, kind of epistaticdependencyCase4b) thatenables
usto controlwhatthe consequencesf thesedependenciearein termsof local optima,andthe
width of fitnesssaddles.
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5.5 The HIFF landscape and natural hierarchy

HIFF is usedin our experimentsto exemplify the classof adaptivelandscapein which the
evolvability of compositioncanbe contrastedvith the evolvability of accretiveevolution.We do
not claim thatHIFF is representativef the structureof adaptivdandscapes generalHowever,
the problem of defining appropriatemodelsfor adaptivelandscapess an openone and, in
passing,we note that HIFF exhibits someinterestinglandscae characteristicsith respectto
hierarchy in natural systems(Simon 1969). In particular, dynamical systemsexhibiting an
interdependencytructurethat is similar at many scalesmight be a natural product of self
organizeddynamicalsystems—as evidence by ‘power law’ signaturesn their dynamics(e.g.
Bak 1996).Then,to the extentthat naturaladaptivelandscapesarethe resultof suchsystems—
scaleinvariant fitness landscapessuch as that which HIFF defines, might not be entirely
hypothetical.

6 Experimental Results

In this sectionwe show empirical resultsof SEAM appliedto a 128-bit Shuffled HIFF. Our
intentis to illustratethe qualitativedifferencein the way thatcompositionoperatesn this scale
invariant problem as comparedto the operationof ordinary (nontransitional) evolutionary
change.Accordingly, we contrastthe operationof SEAM with the resultsof a mutationonly
algorithm, Random Mutation Hill -Climbing, (RMHC), and a genetic algorithm, GA, using
sexual recombination.

6.1 Experiments

RMHC repeatedlyappliesmutationto the featuresof a single binary string (a fully specified
feature set) and acceptsa variant if it is fitter (Forrest& Mitchell 1993). We conducted
experimentswith variousmutationrates(probability of assigninga new randomstate{0,1} to
eachfeature}—specifically, mut = 1/128, 2/128,4/128,6/128,8/128,12/128,16/128,24/128,
32/128 and 40/128. In the following results we show the performanceof RMHC with
mut=16/128=0.125which gives the best maximum averagemaximun fitness over all these
values. (See Oates & Corne, 2001, for an investigation of the mutation landscape for HIFF).

The genetic algorithm is a steady state algorithm, using deterministic crowding, (DC),
(Mahfoud 1995) to maintaindiversity in the populaton—Figure 7. Previouswork (Watson&
Pollack 2000) indicatesthat DC is very effective at maintainingdiversity in this problem,and
this method providesthe best performanceof the GA we have found. (A GA using fithess
proportionate selection or rank sekction with no diversity maintenancemethod gives
significantly inferior performance.)Notice that deterministiccrowding has some algorithmic
characteristics in common with SEAM.
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e Initialize population.

* Repeat until stopping condition:
*  Pick two parents, pl & p2, at random from the population.
*  Produce a pair of offspring, c1 & c2, using recombination, and mutation.
»  Pairup each offspring with one parent according to thengarule below.

*  For eachparent/offspringpair, if the offspringis fitter thanthe parentthenreplace
the parent with the offspring.

Pairing rule: if H(pl,c1)+H(p2,c2xH(pl,c2)+H(p2,c1thenpair pl with c1, andp2 with
c2, elsepair pl with c2, and p2 with c1, whereH givesthe genotypchammlngdlstance
between two individual.

Figure 7: Pseudocode for a simple form of a GA using deterministic crowding.

The GA is testedusing uniform and one-point crossovef.A populationsize of 2000is used
crossovelis appliedwith probability 0.7. We testedmutationratesof mut=0/128,1/128,2/128,
4/128,8/128,and 16/128.The bestperformancdor uniform crossovemwaswith mut=0 because
(since DC maintainsdiversity appropriately)the mixing of bits from stringsthat disagreeon
building-blocksprovidesappropriatevariation. The bestperformancef one-point crossovemwas
with mut=4/128=0.031.

The pseudocoddor SEAM was given in Figure 5. The parametersve use are: number of
features,N=128, alphabetof features,S={0,1}, initial populationsize 256 onefeatureentities
coveringall allelesat all loci’, numberof contextsusedfor dominanceest,t=200, (empirically,
on averagelessthan 10 of theseare requiredto revealthe instability of a proposé join). The
stopping condition is that 3-10° calls to the fitness function have beenused.f, the fitness
function, is provided by Shuffled HIFF with 128 binary features.

6.2 Control experiments

Recallthatthe threemain conceptuafeaturesof SEAM are:the useof variablesize entitiesand
a variation operatorbasedon composition;testing (in)stability of compositionsby testing for

Paretodominanceof compositionover the componententities; and, building environmental
contexts from other cadapting enties in the ecosystem.

Deterministic crowding explicitly usesgenotypicsimilarity as a metric for similarity. This is fortuitously appropriatefor
maintaining diversity in HIFF. In contrast, SEAM makesno such assumptionand usesno such measureon genotypic
similarity.

Onepoint crossovettakesgenesrom parentl on the left of a singlerandomlypositionedcros®ver point, andfrom parent2

on theright of this crossovepoint, or vice versa.Uniform crossovetakeseachgenefrom eitherparentwith equalprobability
independenbf position.Onepoint crossovelis a model of stronggeneticlinkage,anduniform crossovemodelsno genetic

linkage (see Watson 2002 for discussion).

This may be done systematicallyfor practicalpurposeshbut may in principle be donewithout knowledgeof the encoding
dimensiondy ‘over-generating'the initial populationandthenremoving duplicates—morespecifically,by removingentities

that behave the same (produce identical fitness changes) over a sample of random contexts (see Watson & Pollack 2001b).
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RMHC and the GA provide somecontrolsfor the first of these.That is, they use a fully-
specified feature set for each entity/individual, and use mutation and sexual recombination
insteadof composition.In preliminarywork we alsotestedthe operationof analgorithmthatis
the sameas SEAM exceptthatinsteadof usingthe Paretodominanceest, the secondfeatureof
SEAM, it simply determineghatthejoin is unstablaf the averagditnessof eithercomponents
greaterthanthe averagefitnessof the compositeoverthe setof equallyweightedenvironmental
contexts We alsotesteda control for the third feature of SEAM, by using an algorithm that is the
sameas SEAM exceptthatit usesrandomfeaturesetsfor the contextsinsteadof contextsbuilt
from othermembersf the ecosystemln boththeselattertwo controls,subboptimal associations
aremadeandtheentities‘fill -up’, or ‘bloat’, with sub-optimalfeaturevalues—thusdefeatingthe
compositionoperator(Watson& Pollack1999c).Overall, their performancas muchlike that of
RMHC. A numberof variationson SEAM, relatedexperimentsanddiscussiorare providedin
(Watson 2002).

6.3 Results

Performanceis measuredby the fitness of the best string evaluated(in the preceding1000
evaluationsyaveragedver 30 runsfor eachalgorithm.For SEAM the stringsevaluatedare the
groupsof entities (i.e. an entity with its contextualenvironment),forming a completefeature
specification.The problemsize of 128 bits givesa maximumfitnessof 1024. The performance
curve for SEAM is truncatedwhen 95% of runs (29/30) have found either of the two global
optima.

As Figure 8 shows,the resultsfor SEAM are clearly qualitatively different from the other
algorithms: Whereasinnovation by mutation and by conventional evolutionary algorithms
becomesincreasingly more difficult as evolution continuesin this problem, innovation by
compositionis not impeded,andactually showsan invertedperformancecurve comparedo all
othermethodgested. SEAM finds both global optimain all 30 runs.Noneof the othermethods
find eitherglobal optimum iranyof the 30 runs.
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Figure 8: Performancef SEAM, GA with DeterministicCrowding (usingonepoint
and uniform crossover), and Random Mutation-Biiimbing, on Shuffled HIFF.

In Figure9 we showthe size of the largestcorrectsubblock discoveredy eachmethod.The
‘group’ curvefor SEAM is the size of the largestcorrectbuilding-block in any groupof entities
when they are evaluatedtogetheras a contextualenvironment,(this correspondgo the fitness
curvein Figure8). The‘indiv.” curvefor SEAM is the size of the largestcorrectbuilding-block
in any stableindividual entity. We usea log scaleon the sizeaxis—thus,if theincreasen sizeis
proportionalto extantsizethe curvewould appearas a straightline. We canseeclearly in this
figure thatunlike the conventionakvolutionaryalgorithms,innovationby compositioncontinues
steadilyin this problem,approaching scaleinvariantincreasein sizeof correctbuilding-blocks
in individual entities.
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Figure 9: Size of largestcorrect building-block of featuresevolved (log scale)using
SEAM, GA with DeterministicCrowding (using one-point and uniform crossover)and
Random Mutation HilClimbing, on Shuffled HIFF.

6.4 Discussion

The SEAM model provides a concreteillustration of changingthe unit of variation, and
changingthe unit of selectior—asnew entitiesare createdthey are selectedor their abilities at
that level of organisationand provide the componentsfor entities at the next level of
organisationClearly, the SEAM modeloperatedy usinga variationmechanisnthat scalesup
with the size of extant entities, as illustrated in Figure 2. The model also illustrates how
compositionprovidesa divide and conquerproblemdecompositiorof this classof problemby
combiningtogethersolutionsto small setsof featuresto find solutionsto largersetsof features.
Our RMHC results,andproofsin previouswork (Watson2001),showthatno degreeof random
variationcanprovide continuedinnovationin this problemclass.This indicatesthatthe units of
variation discoveredby SEAM are not merely larger but are usefully informed by prior
adaptation Additionally, in the geneticalgorithm experments, the featuresof the individuals
weresubjectto selectionbut not asindependenéntities—only aspartsof a largerfully -specified
feature set. This meansthat the subsetsof featuresexchangedn sexual recombinationare
arbitrary,andaccordingy do not providemeaningfulmodulesIn contrastbecauséhe entities in
SEAM permit the unit of selectionto scalelock-step with the unit of variation, the sets of
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featuresprovidedby compositionare not arbitrary, they are subjectto selectionas an integral
whole, and provide meaningful units of variation.

In summary the resultsshowthat mutationandsexualrecombinatiorareunableto exploit the
decomposablstructureof Shuffled HIFF or otherwiseovercomethe large scalefitnesssaddles
in the landscapeln contrast.the variablessizedentitiesin SEAM areableto eachidentify and
represent correctassemblyof compatiblefeaturesforming a usefulbuilding-block for the next
hierarchical level. In evolutionary computation terms, SEAM describesan evolutionary
algorithmwhere schemataof all sizescoevolvewith oneanother,asif in a multi-playergame,
and cooperativegroups are found incrementallyfrom individual featuresthrough larger and
larger schemataWith respectto the biological analogies, SEAM describesan ecosystenof
entitiesthat coevolvewith one another finding stablesymbiotic relationshipsthat satisfy their
fitnessdependenciewith oneanotherandprogresghroughsuccessivevolutionarytransitions,
each occurring via theomposition of simpler extant entities into more complex organisations.

6.5 Canalisation of successful groups

There is an interesting analogy between SEAM, the Baldwin effect (Baldwin 1896), and

‘Symbiotic Scaffolding’ (Watson& Pollack1999b,Watsonet al. 2000). Thatis, thesescenarios
havein commonthe featurethatrapid non-heritablevariation(lifetime learningor thetemporary
groupsformed for contexts)guidesa mechanisnof relatively slow heritablevariation (genetic
mutation or composition, respectiely). In other words, evaluationof entities in contextual
groups‘primes’ themfor subsequenjoins, or equivalently,solutionsfound first by groupsare

later canalised(Waddington1942) by compositeentities(seealso Bull 1995).In Figure 9, the

‘indiv.” curveshowshow the discoveryof correctbuilding-blocksby individualsfollows behind
the discovery of correct buildidgiocks by groups.

7 Conclusions

Heritable variation is one of the fundamentalaxiomsof evolutionarytheory. However,it is a
familiar irony thatrandomvariationis the sourceof newinnovationbut alsoinherentlyopposed
to the heritability of extantcomplexity. Evolution hascreatedmechanismssuchas enzymatic
repair, that reducethe error rate (Nowak & Schusterl989) andincreasereproductivefidelity,
but still, the questionremains:How can it be the casethat variation may be suppressedqby
whatever mechanism)without also suppressingthe opportunity for innovation? Differential
reproductions alsonot sucha simpleconceptasit might first appearSpecifically,it requiresus
to delineate the entities involved—to identify the entities whose reproduction could be
differentiated.Thereare many biological caseswvherethe relevantreproductiveunits are not so
obvious—more importatly, it may be in principle inaccurate to draw such boundaries.

Symbiotic composition offers an intriguing perspectiveon theseissues.It is perfectly
reasonabléhata numberof entitiesmay eachbe individually stableandyet, via the discoveryof
sucessfulcompositionsf these entities, there is still opportunity for innovation at a hitghe
of organisationThus,compositionpresentso oppositionbetweerthe stability or heritability of
the componententities, and the opportunity for innovation in entities at the next level of
organisationAnd significantly, this view is enabledby a willingnessto repeatedlyre-definethe
boundary of the entities involved.
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More concretely,the separationof a local optimum from the next best configuration of
featureds a fundamentalimiting characteristiof adaptivelandscapesandsaddlecrossingis a
useful way to conceptualiseghe ability of an adaptivemechanismBut, what scaleof fithess
saddleshouldwe expectin a naturaladaptivelandscapetuitively, we might suspecthat as
one scale of ruggednesss overcome,a larger scale of ruggednessbecomesthe limiting
characteristicof the adaptivelandscapelf this is so then thereis no fixed scaleof saddle
crossingability thatis sufficient, and open-endedevolvability requiresan adaptivemechanism
that scalesip as evolution continues, enabling larger and larger ‘jJumps’ in feature space.

In our experimentausinga scaleinvariantfitnesslandscapewe find that, asexpectedbpoth a
mutationonly algorithm andthe GA havealimit to the sizeof fithesssaddlethatthey cancross.
More exactly, as adaptationcontinuesand the distanceto the nextbest optimum increases,
adaptationby these methodsbecomesincreasingly difficult. In contrast, SEAM is able to
discoverthe epistasisstructurein the problem,usecollectionsof featuresin differententitiesto
representt explicitly, andby searchingcombinationof theseentitiesis ableto continueto find
successfulcombinationsof featuresthrough many hierarchical levels. Accordingly, these
experimentsshow that on this classof adaptivelandscapegvolvability under mutation and
sexualrecombinationwithin the accretivemodel of adaptationis inherently limited, whereas
innovation by composition tdrs the possibility of inherently scalable, oparded evolvability.

The SymbiogenicEvolutionaryAdaptationModel providesa concreteillustration of oneway
to realise a scalingup of the units of variation and selection characteristicof the major
evolutionarytransitions SEAM abstractsawayall populationdynamicsandusesa simplemulti-
context test to determinewhether a compositewill be stable. Resulting compositionsare
compatiblewith a selfishmodelof the entities,andthe mechanismhasappeahg analogiesvith
natural ecosystemsbut the appropriatenessf this model for multi-speciescompetitionin an
ecosystemmeedsto be qualified. Also, scaleinvarianceis a propertyobservedn many natural
systems,but whetherthe natural adaptive environment has characteristicdike those of the
particular model that we developed in HIFF is an empirical matter.

In the meantime we suggesthatthis algorithmicperspectiveon the formationof higherlevel
entitiesfrom the compositionof simplerentitiesprovidesa usefulfacetin our understandingf
the impact of the major evolutionary transitions.
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