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In this paper we present a method to extract qualitative information from any classi�cation model
that uses decision regions to generalize (e.g. neural nets, SVMs, graphical models etc) that is
independent on the dimensionality of the data and model. The qualitative information can be
directly used to analyze the classi�cation strategies employed by a model, and also to directly
compare strategies across di�erent models. We apply the method to compare between two types
of classi�ers using real-world high-dimensional data.

It is very diÆcult to gauge the qualitative performance of high dimensional classi�cation methods. The
most common form of analysis usually consists of comparing raw performance scores. But, as a simple
one-dimensional measure, it does not lend any insight as to what a model's advantages and shortcomings
may be. This problem is exacerbated when we want to compare across di�erent methods that solve the same
problem, across a bank of di�erent neural networks, di�erent graphical model's, di�erent SVMs etc. . . .

The way that a model can form sets with an in�nite number of points from a �nite training sample
is intrinsically tied in to how it can generalize. Many of the models used today for classi�cation such as
feed-forward neural networks, support vector machines, nearest neighbor classi�ers, decision trees and many
Bayesian networks generate classi�cation sets that are manifolds or manifolds with boundaries. This is a
strong local property of the sets, which implies the existence of neighborhoods. That is, most of the points
in the set have a neighborhood surrounding them such that all points in the neighborhood are also part of
the set. Thornton [5] demonstrated that many of the datasets in the UCI machine learning repository [2]
contain data points that exhibit neighborhood properties, and as such are amenable to generalization by
manifold type classi�ers.

Given this commonality of generalization method between classi�ers then what di�erentiates between
them is how they individually partition the training points into decision regions. A classi�er might only use
separate convex decision regions to classify. Thus separating sample points explicitly by completely bu�ering
them from each other in separate decision regions. However most interesting classi�ers use more complex
decision regions to organize the sample points. The points are organized into decision regions with concavity,
thus creating a partitioning of the points without explicitly placing them in disconnected decision regions.
In a sense this partitioning allows a �ner grain of di�erentiation since points may be closely associated by
being in a convex sub-component of the decision region or be distantly associated through a \network" of
other convex sub-components. In �gure 1 we see some of the variations possible in decision region structure:

a b c

d e f

a) The number of decision regions used. b) The num-
ber of sample points in a decision region. c) A decision
region may be convex, such that any two sample points
are within line of sight of each other. Or concave, some
of the points inside it would share neighborhoods while
others would be separated. d) Concave decision regions
can be decomposed into convex subcomponents. e) The
degree that the convex subcomponents are attached to-
gether in a concave decision region is indicative of how
separated they are. The left pair are two strongly at-
tached convex subcomponents, but the right pair are
very weakly connected. f) Relevant part of decision
regions.

Figure 1: Examples of some of the variations possible in decision region structure.

Our aim is to analyze the decision regions of classi�ers. We would like a means to extract the di�erent
decision regions of classi�ers and decompose them individually. However, dimensionality in
uences the



complexity of the models. For example, a neural network can have a number of decision regions that is
exponential in the input dimension, where the complexity of the individual decision regions is also exponential
in the input dimension [4].

However, there is an intrinsic discrepancy between the potential complexity of the model, the complexity
of the data and the relevant complexity of a trained model. In �gure 1f we see an example of this. The model
could be representing some highly complex decision regions. However, the actual data points only reside in a
simple part of the of decision regions. And with respect to these data points, the model is basically enclosing
them in two pseudo-decision regions, one convex and one slightly concave. Hence the additional complexity
of the model is just artifactual.

Our analysis method tries to extract this relevant complexity, by elucidating the properties of the decision
regions in the vicinity of the data points. This is done not by directly examining the decision regions, but
rather by examining the e�ects that the decision regions have on the relationships between the data points.
This is what makes the analysis method practically independent of the model type and dimensionality of
the input space.

The rest of the paper is organized as follows: We �rst introduce the basic analysis method which uses
graphs to describe the structure of decision regions. Following, we give an example of its application to
a neural network that classi�es points in a three-dimensional space. The fact that it is three-dimensional
allows us to visually compare the graph with the actual network decision region. In the section after, we
re�ne the graph analysis method, and explain how to automatically decompose the graph into the subgraphs
which correspond to decision region subcomponents. We conclude with an example where we analyze two
di�erent types of classi�ers on a high-dimensional problem. The graph analysis method allows us to clearly
show that one of the classi�ers discovered that one of its classes is really composed of two subclasses.

Low Level Analysis

The fundamental generalization quality of manifold type classi�ers is the existence of common neigh-
borhoods between points, which is what our analysis method tries to detect. As input we are given two
things, the classi�er we wish to analyze and relevant labeled sample points, possibly the training data. It is
important that the sample points embody the part of the input space that is of interest, otherwise we would
be analyzing the classi�er's artifacts and not the relevant regions. From now on, when we refer to decision
regions we will mean only the relevant portions of the decision regions.
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a) The connectivity graph is generated by
sampling between the sample points. In this
case we see how sampling between points A
and B detects a boundary, but points A and
C share a neighborhood. b) A connectivity
graph for two decision regions, one convex and
one concave.

Figure 2: The analysis method

Figure 2a illustrates how the analysis method works. We take all pairs of points with the same classi�-
cation label (in this case points A,B and C). Between each pair we extend a line segment in the input space.
We then sample along this line with respect to the classi�er. In other words, we �nd a series of points in the
input space along the line and apply the classi�er to them. What we look for is a break in the connectivity,
a change in the classi�cation label in one or more of the points. Such a change implies that between the two
points there is a decision region boundary, and the two points do not share a common elliptic neighborhood.

With this connectivity information we construct a graph in the mathematical sense. In this graph each
sample point is assigned a vertex, and the edges are the actual connectivity information. That is, if two
points are connected in the actual input space with respect to the classi�er then their vertices are connected
in the graph.

This connectivity graph can tell us three basic pieces of information: What points reside in separate
decision regions, if points are colocated in a convex decision region, or if points reside in a concave decision



region. Moreover, in the latter case we can decompose this concave decision region and �nd what points
reside in its di�erent convex subcomponents.

Figure 2b illustrates how the graph relates these three pieces of information. If decision regions are
disconnected then the graphs of the points they enclose are also disconnected. In the �gure we see this
with respect to two decision regions, whose internal points form two disconnected graphs in the connectivity
graph. When points are in a convex decision region then by de�nition they are fully connected and as such
form a clique in the graph. We see this convexity property in the left decision region{ it is convex and hence
its graph is fully connected. The right decision region is not convex and so its graph is not fully connected.
However cliques within its graph represent convex subregions of this concave decision region. In this example
decision region there are three cliques, representing a decomposition into three convex subcomponents.

Analyzing a three-dimensional neural network

A 15 hidden-unit threshold neural network was trained to predict whether a thrown ball will hit a target.
As input, it received a throwing angle, an initial velocity and a target distance ( �gure 3), only three inputs
which makes it possible to visualize its decision regions. After iterations of back-propagation and hill-climbing
it achieved an 87% success rate on the training data. This system can be easily solved analytically, and the
analytic decision region is shown in �gure 4 contrasted with the neural network decision region which was
extracted using the DIBA algorithm [4].

x Throwing Distance 0-100

v Initial Velocity 0-100

5 Meter Target ß Angle 0-90

Figure 3: The classi�ca-

tion task of the ball throw-

ing network is to predict

whether a ball thrown at

a certain velocity and angle

will hit a target at a given

distance.
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Figure 4: The decision region of the ball throwing network (left) con-

trasted with the analytic decision region (right).

Using the �rst 78 of the positive training points, a connectivity graph was generated, as seen in �gure 5b.
The graph was drawn using a spring-gravity type algorithm [3], where the edges are modeled as springs in
a physical model. This drawing algorithm has the property of making highly interconnected vertices cluster
together.

In the graph we can discern four di�erent clusters that practically form cliques. We can label the vertices
based on which cluster they belong to (if they belong to any cluster). Since this is a three dimensional
classi�er we can plot the position of the actual sample points corresponding to the labeled vertices inside
the decision region (�gure 5a). In this �gure we can literally see that the points that make up each of
these clusters correspond to di�erent \slabs" or conspicuous convex subregions in the actual neural network
concave decision region. Also notice how the connections between the clusters in the graph correspond to
the relationships between the actual subregions.

Since we have separated the points into convex subregions we can also analyze their geometric properties.
For example, by performing primary component analysis [1] (PCA) on each of these clusters of points, we
can discern their dimensionality and also their orientation. Figure 6 shows the three eigenvalues for each of
the clusters as well as for all the points combined. The eigenvalues of these clusters all have a practically
negligible third eigenvalue. This indicates that they all form part of a decision region which takes up little
volume in the input space, rather it is almost a two-dimensional embedding in a three-dimensional space.
As seen in the graph, this is not a property we could have discerned by just performing a PCA of all the
points since the eigenvalues of all the points have a sizeable magnitude in all three dimensions.

Higher Level Graph Analysis
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Figure 5: a) The labeled points extracted from the connectivity graph

superimposed in their correct position within the decision region. b) The

connectivity graph of the decision region in �gure 4 using 78 internal points.

The vertices are labeled by association to four di�erent clusters.
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Figure 6: The eigenvalues of the

PCA analysis for each of the groups

contrasted with the eigenvalues of

all the points taken together.

The higher level analysis method proposed extracts two pieces of information from the connectivity graph:
First, which points are colocated in the same convex subregions. Second, how do the convex subregions
combine to form the original decision region. The basic assumption of the method is that multiple points
inhabit the convex subcomponents of the decision region. This is a fair assumption if we expect the classi�er
to have generalization properties, since in a manifold type classi�er only by recognizing neighborhoods is
generalization possible{ which implies the aggregation of points together into convex subcomponents of
decision regions. One point to note is that it is easy to test if a clique really corresponds to a convex
subregion, since if we suspect that a group of points are located in a convex subregion then we can generate
new points between them and test if they also form part of the clique.

In the �rst stage of the method we seek to group sample points with similar properties, to �nd points in
similar locations with respect to the decision region. This is done as following: In the connectivity matrix
associated with the graph, each row enumerates the edges of a vertex in the form of a binary vector. If
the hamming distance between two such vectors is negligibly small then we group their respective vertices
together. This means that all vertices in a group are mostly connected to the same vertices and disconnected
from the same vertices. The logic of this selection mechanism is that if a group of points are in the same
convex subregion then they should all be connected with each other, but by the geometry and topology of
the decision region they should also all be connected to the same vertices outside their immediate clique.
Therefore they should all have a similar connectivity pattern and that is what we look for in forming groups.
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Figure 7: a) A concave decision region housing nine points in

di�erent convex subcomponents. b) The connectivity graph for

the points in the decision region. c) The group graph associated

with the labeling in the connectivity graph.
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For example, consider the concave decision region in �gure 7a and its connectivity graph in �gure 7b. If
we label the vertices based on similar connectivity, we end up with three groups of points as shown. Each
group represents a convex subregion, as each group's vertices forms a clique. However, these groups are
di�erent with respect to their position in the decision region, which is seen by their intergroup connectivity.

In the second stage we wish to simplify the original connectivity graph, in order to gauge the relationships
between the convex subregions. This is done as following: For each group, we take all its vertices and merge



them, thus transforming the group into one labeled vertex with the same intergroup connectivity as the group
originally had. We are left with a much smaller and sparser graph that relates the relationships between the
groups, their intergroup connectivity. In �gure 7c we see this operation performed on the connectivity graph
in �gure 7b. This new graph shows us that with respect to the sample points the original decision region
partitioned the space into three groups such that one of the groups (group B) is connected to both of the
other groups, but that the other two groups are not directly connected. Notice how the graph is similar in
structure to the actual decision region.

Figure 8 shows the group graph for a more complicated concave decision region. Cliques in the group
graph represent subcomponents that may be combined to form larger convex subregions, for geometrical
analysis of the points in the subregion. In the trivial case, every edge in the graph is a clique and represents
a potential combined convex region. Another graph characteristic is loops of cliques. Loops of cliques in the
group graph represent the existence of holes in the decision region. As illustrated the group graph relates
the the actual partitioning between convex subregions, which subregions are directly connected, which are
distantly connected and what the connection paths are.

Comparing two classi�ers: A high-dimensional example

The UCI repository [2] contains a dataset contributed by Alpaydin and Kaynak of handwritten digits.
There is a preprocessed version of the dataset, where the 32 by 32 images are shrunk to 8 by 8 by counting
the number of pixels in each 4 by 4 of the original. This training set contains 3823 samples from 30 people.

Using the preprocessed dataset the following classi�cation task was fabricated. The data corresponding
to the numerals 3 and 4 were assigned to one class, while the remaining numerals were assigned to a second
class. Thus the task consisted of classifying a 64 dimensional input into one of two classes.

Two classi�ers were used, a sigmoidal feed-forward neural network with one hidden layer of 7 units and a
K-nearest neighbor classi�er with K set to 9 [1]. The network was trained using conjugate gradient [1] until
it reached perfect classi�cation on the test data.

In order to make the connectivity graph more presentable, only the �rst 63 cases of the 3-4 class were
used to draw it. However in the additional levels of analysis 300 exemplars were used.
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Figure 9: a) The connectivity graph of the neural

network. b) The connectivity graph of the KNN

classi�er.
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Figure 10: a) A PCA analysis of the convex

subregions in the network connectivity graph. b)

A PCA analysis of the convex subregions of the

KNN connectivity graph.

Figure 9a shows the connectivity graph for the neural network. Since the graph is connected it consists
of one decision region. However it is apparent that this graph is illustrating a concave decision region
because the graph consists of two highly connected regions with only very sparse connectivity between them.
The points were labeled using the labeling method described above at a 90% Hamming similarity, which
labeled the points as expected into two classes corresponding to these practically clique subregions. In the
connectivity graph the clusters are almost completely disconnected, therefore we can not draw a group graph,
since a group graph is only constructed when the groups make up parts of larger convex subregions.

When we examine the actual numeral associated with the labeled points we realize that the points



associated with the �rst label all correspond to the threes! And all the points with the second label correspond
to the fours! What this means is that the network discovered that the 3-4 class really consists of two subclasses
and divided its decision region to clearly separate between them. Suppose that we didn't know that the class
was decomposable and wanted to know what the subregions were that the neural network found. As before,
since the subregions are convex we can analyze them using PCA. In �gure 10a, for each group, we took
the mean of the points, in the top half we added the �rst 20 eigenvectors of the PCA normalized by their
standard deviation, and in the bottom half we subtracted the same values. This gives a coarse approximation
of the scope of the decision region. As can be seen, the left images correspond to threes and the right to
fours, so we can literally see that the two subregions correspond to two logically separate subclasses.

Figure 9b shows the connectivity graph for the K-Nearest Neighbor classi�er. Again, it is a connected
graph and hence has one decision region. This graph doesn't lend itself to a simple visual analysis, since
it is more dense. However, when we apply the labeling method at 80% Hamming similarity we get three
labeled classes. The group graph analysis of the three labeled sets shows that the vertices in group C are
connected to both group A and B, but that there are very few connections between groups A and B directly.
Therefore, the group graph is of the form we saw in the example in �gure 7. In �gure 10b we see the same
form of PCA analysis as in the neural network example on the three di�erent groups as well as on the two
cliques of the group graph. As can be seen, group A corresponds to threes, groups B and C correspond to
fours, as is the case with the composition of groups B and C, but the images of the composition of groups
A and C are not interpretable. This goes with what we know about how the data is structured, a convex
subregion consisting of both threes and fours would have to contain spurious data, and lead to a malformed
classi�cation set. When we examine the actual numerals associated with the labeled points, we see that the
A labeled points do correspond to threes, and the B and C labeled points correspond to fours.

Both of the classi�ers realized that the points making up the 3-4 class are not homogeneous. This is
demonstrated by the fact that both classi�ers used a concave decision region to house the class's points.
However the discrepancy between them lies in how clearly they realized what the two subclasses are. The
neural network made a very clean distinction, clearly dividing the space between the threes and fours. Where
as the K-Nearest neighbor classi�er divided some of the threes completely from some of the fours (groups
A and B), it did not di�erentiate between the threes in group A and the fours in group C, hence we would
expect potential misclassi�cation in that region of the input space.

Conclusion

Many classi�ers operate by constructing complex decision regions in the input space. These decision
regions can be few or many, convex or concave, have large or small volumes etc. By focusing on the
sample points enclosed in these regions we have demonstrated a method to extract these properties which
is independent of the classi�er type or the dimensionality of the input space. It thus allows us not only
to analyze individual high-dimensional classi�ers but to compare completely di�erent classi�er models on
the same problems. We have demonstrated this by comparing a neural network and KNN classi�er on a
handwritten digit classi�cation problem, and demonstrating fundamental di�erences in their generalization
strategy.

We feel that this method is a signi�cant contribution in helping to unite a �eld with many models and
approaches by giving an analysis tool which addresses their greatest common denominator, their method of
generalization, thus allowing the qualitative comparison of present and future high-dimensional classi�ers.
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